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GA Assisted SDF Scheduling for Energy-Aware
Mapping of Heterogeneous Processors

Nicholas Kelly, Christopher Erb

Abstract—We present a method of optimizing both energy
and latency of a Synchronous Dataflow model (SDF) using
genetic algorithm (GA) assisted list scheduling. Our solution
is fully automatic requiring only the SDF definition, processor
specifications, and communication bus specifications. Using these
parameters, latency and energy are accurately modeled taking
into account dynamic energy, static energy, and DVFS overhead.
Actor firings are then optimized for minimal latency and energy
using SPEA2, a multi-objective GA. The resulting schedule
defines the overall timing schedule, DVFS schedule, and processor
mapping. In initial tests, energy-optimized schedules can consume
up to 38.5% less energy, with a minimal effect on latency. Our
final system is fully configurable and versatile, working on SDFs
(for DSP applications) and task graphs (for general applications).

I. INTRODUCTION

Due to the power-wall seen in homogeneous processors,
modern embedded systems have been transitioning to het-
erogeneous, multiprocessor systems. Additionally, with the
popularity of mobile devices, energy has emerged as a con-
straint, especially for todays battery technologies. In order to
minimize energy, a variety of power-saving techniques are
applied. Big-little architectures contain processors of varying
performance in order to save energy on less intensive tasks,
while still maintaining responsiveness. Dynamic Voltage and
Frequency Scaling (DVFS) is employed in some processors
allowing the operating voltage (and/or frequency) to be scaled
in relationship to the performance needed. Both of these
techniques allow for significant energy savings in certain
situations; however, the method of scheduling and mapping
tasks in order to optimize for energy is challenging in most
situations. The search space of this problem is very vast, due
to the flexibility offered by the different processors, concurrent
tasks, and energy-saving techniques (DVFS). Such a problem
is considered NP-Hard and requires methods for generating
quality (not necessarily optimal) solutions while optimizing
energy and execution time.

For this reason, various models of computation (MoC) have
been created which allow for concurrency, determinism, and
ease of scheduling. We have chosen to consider Synchronous
Dataflow (SDF) graphs, attributable to their properties which
allow for static (offline) scheduling. A SDF is a graph with
various nodes (actors) which are connected by arcs. Each
actor requires and produces a static amount of data (tokens)
which allows for a periodic schedule of firings. SDFs are
primarily used for modeling DSP systems, for applications in
image processing, audio decoding, etc. However, task graphs
(Homogeneous SDF), a subset of SDFs, can be used for

modeling general programs where each task represents a basic
block (BB). For this reason, SDFs are an important, general
MoC which can be used to statically allocate, map, and
schedule tasks to various processors.

In this paper, we propose an energy-aware process of
mapping and scheduling using SDF graphs, while maintaining
timing and cost constraints. We choose SDF graphs because
they have a diverse usage, and are able to be scheduled
offline, allowing for more energy savings. In order to find
optimal solutions, we propose a genetic algorithm (GA) which
maps and schedules each actor instance on a set of processor
elements (PEs). While genetic algorithms are usually slower in
execution time, they have been shown to avoid local-minima
and yield more optimized solutions. Additionally, they allow
for multiple optimizations through a tuned, multi-parameter
fitness function or multi-objective GAs. Our GA contains
3 steps (mutations): mapping (actor-processor assignment),
scheduling (general actor schedule, list schedule), and runtime
scheduling (specific time actor runs).

There are several benefits to our solution: first, the input to
the program is only a SDF graph and a list of processors with
timing, power, and cost characteristics. Furthermore, since
GAs are iterative, a simulator could potentially be run to
measure timing and power statistics instead of being specified
in the input. Second, SDFs are applicable in both DSP and
general processing environments, allowing for diverse usage.
Third, it uses a GA to produce quality, optimized mappings
and schedules based upon energy, timing, and cost within a
specified amount of acceptance.

II. RELATED WORK

A. SDF Scheduling

SDFs are first proposed in [1], where scheduling methods
are described. For our purposes, we adapt methods for gener-
ating the repetition vector for the SDF which aids in creating
a precedence graph for scheduling. Unlike other techniques,
we are able to only require the SDF as input, instead of
the repetition vector or other parameters. While we could
generate a precedence graph (HSDF) like other solutions [2],
we instead decided to use the repetition vector, along with the
SDF graph to generate multiprocessor schedules, similar to [3].
This decision is primarily made for its simplicity since storing
a precedence graph with multiple arcs could be complex for
increasingly concurrent SDFs with many actors.

Pipeline scheduling with SDFs is described in [2] where
execution is pipelined with the next iteration of the SDF
running at the same as the current iteration. While this
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increases the throughput, it means there is effectively little
idle time on processors allowing for less opportunities for
DVFS, which is why we ignore it for our solution. However, it
should be noted that since the throughput is increased through
pipelining, the effective energy per iteration is decreased, thus
it could yield interesting future work. Multi-Frequency SDF
graphs are described in [4] where different sections of the SDF
are assigned a certain frequency, which is especially useful
for DSP (sampling) applications. In their solution, actors are
assigned to bins based upon operating frequency. In our case,
we want to keep SDF general since the same functionality
could be replicated in the actors instead of scheduling. How-
ever, since bins can have significant idle time, multi-frequency
could make a useful addition for DVFS utilization.

B. Genetic Algorithms for Scheduling

Once the dependencies of the actors are known, the problem
becomes exploring the expansive space of processor mappings
and schedules. To explore this space, we will be using genetic
algorithms. The genetic algorithm approach towards mapping
and scheduling is most similar to [5]. However, instead of
having a two-step iterative process, we specify mutation rates
for each level in our GA, where mapping has the lowest
mutation rate, scheduling has the second lowest, and runtime
scheduling has the highest. Having multiple mutation rates
allows parameters to change according to their granularity,
allowing for the different steps to be execute in a single GA.
[6] uses a strategy that singly replaces individuals with child
schedules to lessen the effect of population size and remem-
bers the best schedule, regardless of it being in the population
pool. Similarly, in order to keep a diverse population (no local-
minima), we allow the fittest individual to be replaced, though
the individual still be archived. The idea of a cluster presented
in [7] promotes solution diversity by basing the evaluation
of fitness between significantly different populations off of a
looser metric. We also implement this in order to help avoid
local-minima using a island-model of GAs.

C. Optimizing for Energy

The first layer of the energy problem is the process mapping
and scheduling which will have effects on energy consumption
due to inherit processor properties. Once a scheme has been
discovered, a popular tactic is to use voltage scaling along
with frequency reduction to utilize slack time and conserve
even more power as seen in [5], [8], [9]. As with all GAs,
having a well tuned fitness function is crucial, for this reason
we used previous solutions as a starting point. Since [5]
uses a GA for energy optimization, their fitness function is
applicable in our situation. In their solution they have a fitness
function for scheduling based upon energy dissipated and the
associated time penalty for the schedule. Additionally, they
specify a function for mapping which is similar to scheduling
but takes PE area into consideration. Our technique follows
their conventions, but uses a general cost parameter for each
PE instead of area and uses a combined fitness function.

III. METHODS

A. Energy Modeling

Our energy modeling is based off of capacitive switching
and static leakage of CMOS circuits [10]. While our energy
model can be used with absolute (processor accurate) values, it
can also be used with relative values, since only comparisons
are made in the optimization algorithm (unless an accurate
energy result is required). As voltage is scaled, the energy
used in different actor firings will change. In order to model
the dynamic energy contribution, we use:

Edyn ∝ a0→1CdynV
2
ddN (1)

Actor activity factor (a0→1) and execution duration (N ,
in cycles) are actor specific to the PE. The activity factor
describes what percentage of the the PE/components are being
utilized during the actor firing. Additionally, the execution
duration is the time it takes for an actor firing to run on
a certain PE. Dynamic capacitance (Cdyn) and Vdd are PE
specific, where Vdd is scaled during runtime to one of a number
of discrete voltages specified for the PE. Discrete voltages
are used for scaling since continuous DVFS is currently not
available many modern processors. However, as explained in
the next section, the duration can be scaled continuously by
switching the voltage at different times. For modeling static
energy, a leakage current needs to be specified:

Estat ∝ IleakVdd (2)

Depending on the processor, the voltage could be the current
voltage specified by DVFS, or the core (max) voltage. In
combination with processor energy modeling, bus energy is
also modeled per token transmission. In this case, a fixed en-
ergy value is associated with each cycle tokens are transmitted
(dependent on bus frequency). Additionally, our model takes
into account DVFS overhead factors such as the PLL lock time
and upscaling energy cost [11]. When a DVFS switch occurs
where the ending voltage (Vdd,e) is higher than the starting
voltage (Vdd,s), the following is added to the total energy:

Edvfs ∝
{

Cdyn(V
2
dd,e − V 2

dd,s) if Vdd,s < Vdd,e

0 otherwise
(3)

Where the DVFS transition (in cycles) is processor specific.
Similarly, during any DVFS switch, the duration of the firing
currently running is extended by the PLL lock time (where
the process is currently disabled) which is also PE specific.

B. Latency Modeling

tt0 tsw tdes

V

vs

vswtsw trm

firingprev firingcur firingnext

Fig. 1: Actor firing DVFS switching



3

Our latency modeling (see Figure 1) uses a method similar
to [8] where a firing has start voltage (vs) (set by the previous
firing) and an end voltage (vsw, becomes vs for next firing).
The switching point (tsw) not only determines energy savings,
but also the overall runtime of the firing. Thus, a firing
can be scaled to fit a variety of durations with only a few
discrete voltages, allowing for idle slack to be easily recovered.
When actors are specified, only the execution time (td0) at
the maximum voltage (Vmax) for the processor needs to be
included, other additional runtimes are calculated based upon
the switch time and DVFS voltages (see Equation 4).

td =
td0Vdd(Vmax − Vth)

2

Vmax(Vdd − Vth)2
(4)

Since the genotype only modifies the target duration (tdes)
and switching voltage, the actual switching time of the voltage
needs to be calculated. Using Equation 5 and Equation 4, the
switching point can be determined (see Equation 9). Note,
that during runtime, the switching voltage and target duration
values chosen by the GA may lead to an invalid result. To
prevent this, multiple voltages are iterated through to try
achieve the desired target duration at a different voltage if
necessary.

tdes = tsw + trm, 1 =
tsw

td,sw
+

trm

td,rm
(5)

Vms = (Vmax − Vth)
2 (6)

Vcs = Vmax(vs − Vth)
2 (7)

Vsw = Vmax(vsw − Vth)
2 (8)

tsw =
vsvswtd0Vms − tdesVswvs

Vcsvsw − Vswvs
(9)

C. List Scheduler

A list scheduler is used to schedule actor firings based
upon input from the GA. In our implementation the GA
makes the majority of high-level scheduling decisions. Thus,
the list scheduler is primarily used as a method of resolving
possibly invalid schedules. Since the GA generates random,
absolute start times, using a list scheduler with a priority
list sorted by relative start time guarantees control as well as
validity. In addition to time, a global energy for the schedule
is kept and updated each time a firing is scheduled (using
the previous described energy models). During each timestep,
the list is iterated in sorted order and any actors which can
currently run on their assigned PE (by GA) are scheduled to
run starting at the current timestep. When a firing is assigned
to a processor and time, the end time and voltages for the
firing are calculated from the target duration (modified by
GA). These end times are added to another sorted list which
is used to progress time. When a firing ends tokens are
sent along the assigned bus (by GA) for the receiving actor,
effectively modeling communication and delaying actor start
time. Modeling communication introduces additional delays,
especially when few buses are available.

SDF,
Processor,
and Bus

definitions

SDF,
Processor,
and Bus

structures

Randomize
Initial

Population

Resolve
with list
scheduler

List of
Candidates

(a
generation)

Evaluation Crossover

Mutation

Pareto
front of

Candidates

continue

completed

Fig. 2: Program flow

D. Implementation

Since our goal is to optimize both latency and energy, a
multi-objective GA is used (see Figure 2). In particular, we
use SPEA2 since it has been shown to generate slightly more
diverse results and avoid local minima [13] (allowing for more
flexible design decisions). In order to initialize the genotype
for the GA, we first calculate the repetition vector for the
SDF, using a method similar to [1]. The repetition vector
effectively defines size of the genotype, where each actor
firing could be thought of as a chromosome and each attribute
of the firing would be a gene. A chromosome is composed
of 4 + n genes where n is the number of actors. These
include: processor, start time, target duration, voltage, and bus
assignments for sending tokens to each actor. The processor
and bus assignments are only modified by the GA, and set
during population initialization, crossover, and mutation. Start
time is used as the relative priority in the list scheduler, where
the actual start time is updated after the resolution phase.
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Fig. 3: Simulation results

Similarly, the target duration and voltage are suggestions to
the list scheduler in order to calculate firing duration; however,
in some cases the target duration may not be possible with the
specified voltage and the genes will be updated accordingly
after the resolution phase. It is important to note that since
a multi-objective GA is used, multiple (pareto) solutions are
returned. The appropriate solution to the user’s application
should be selected or determined with a weighted fitness
function.

Due to the complex nature of the optimization problem,
we define custom genetic operators which closely resemble
bit-string methods but have inherent bounds. In the case of
crossover we use a uniform method since it can produce more
diverse results and better explore the search space [14]. In our
implementation, two offspring are created from two parents,
each with random and opposite chromosome selections from
either parent (which are resolved with the list scheduler).
Additionally, our mutation function defines multiple levels of
mutation (through weighted probabilities) in order to have tight
control over how often various genes change. For example
since firing schedules are dependent on processor mapping,
processor assignment mutations should occur less often (ef-
fectively having a lower rate). Our mutation function modifies
multiple genes corresponding to their contextual (based upon
other genes) bounds, and finally resolving validity through the
list scheduler.

Additionally, in order to simplify the modification and
usage of genetic information, we classify each individual as
a Candidate and each actor firing as a Firing. The genetic
operators described operate directly on these objects and then
translate the genetic information into the defined genotype
structure. Additionally, each of these classes contain methods
for data manipulation (e.g. energy calculation) through using

the SDF configuration data as a reference.

TABLE I: Test results and baseline comparison

Test Runtime Gen. Latency improv. Energy improv.
sdfo 137.4s 27226 0.0% 20.1%
sdfo2 821.1s 21335 0.0% 8.6%
sdfo3 1063.9s 20002 0.0% 9.2%
sdfo4 3669.6s 20002 -5.5% 19.8%
sdfo5 1374.2s 24344 -3.1% 7.2%
sdfo6 155.7s 22860 0.0% 20.9%
sdfo7 1304.8s 20254 -1.2% 38.5%
sdfo8 1815.2s 20004 -2.1% 0.9%
sdfo9 5571.0s 20002 -10.8% 5.3%

sdfo11 6214.5s 20056 -1.6% 16.4%
sdfo12 914.1s 21803 -6.5% 16.8%
sdfo13 593.5s 20108 0.0% 24.0%
sdfo14 976.9s 23365 0.0% 16.5%

IV. RESULTS

Our final implementation was done in C++ using SPEA2
from the ParadisEO library for multi-objective searching using
genetic algorithms [15]. A configuration file (YAML) is the
main input to the program which contains 3 matrices repre-
senting the tokens consumed by each actor on a edge, tokens
produced by each actor on a edge, and initial tokens on a
edge. The file also contains information about each processor
(e.g. voltage values) and bus available for use (e.g. energy
and frequency). Additionally, many aspects of the algorithm
are configurable including GA parameters, and optimization
variables. For our tests, we refer to only latency optimization
as SGA (SDF GA), and energy and latency optimization as
SEGA (SDF Energy GA).

To generate test graphs, we use SDF3 [12] which is a
command line and C tool for randomly generating SDF graphs.
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Fig. 4: sdfo3 SDF graph (initial tokens in parentheses)

It allows the user to define several parameters that control the
size and shape of the graph, and then randomly generates a
graph based off of this input. These non-trivial graphs are
converted to a configuration file for our program which can
produce an optimal schedule for completion time or optimal
energy/latency schedule. However, there are some attributes
which are not generated by the tool. In these cases, we
have used uniform and partially random values for processors
and buses. Additionally, the parameters for the energy model
have been simplified by setting Cdyn to 1 and setting Estat

to a percentage of the max Edyn. Furthermore, generating
an optimal energy schedule involves more decision variables
(larger genotype) and as a result takes more generations to
resolve for the GA.

We have run the tool on 13 randomly generated SDFs.
All tests were performed on a 2.53GHz, dual core system
with 4 GB RAM. Additionally, the program was set to run
on a population of 20 individuals for a minimum of 10,000
generations with additions of 10,000 until no improvement
was detected.

In Figure 3 we have run time and energy for 3 points.
The first is scheduling optimization without energy consid-
eration (baseline), the second is with energy consideration
and optimizing energy, the third is with energy consideration
and optimizing run time. For nearly every test, our energy-
optimization shows improvement over the baseline. However,
for the best-energy results in the pareto solutions for each
test, the latency can sometimes be considerably higher. In
order to show the effectiveness of our algorithm with minimal
change to latency, we select the best-latency case for following
diagrams.

In Table I we show the percentage differences of the energy
optimizations when compared to the latency optimizations
(baseline). For these initial tests, there is minimal change to
the baseline latency. Additionally, most tests show a significant
improvement in energy consumption. However, it should be
noted that the effectiveness of the algorithm is completely de-
pendent on the SDF. And in some of our testcases, the baseline
schedule showed little or no areas for energy-optimization.
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Fig. 5: sdfo3, with no energy consideration
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Additionally, we present sdfo3 and sdfo4 as example results
from our algorithm.

Figure 5 is a runtime chart output of sdfo3 from our
program. This SDF was input with the assumption that there
were 3 buses and 5 processors. The 3 narrow bars represent bus
communication, with the bar-color representing the receiving
actor. Each of the sub-charts represent the timeline for one
processor, with each bar-color representing the running actor.
From this graph it can be seen that no unnecessary delays are
present. No processor is idle when there is a process ready
to run, and the process that has the most dependencies is run
first. This means it is an optimal (or close to optimal) solution.

Once energy consideration is added, the outcome should be
that any process not on the critical path will be elongated by
running at a lower voltage. Note, that this is because for our
timeline graphs we choose the pareto solution which yields
the lowest latency. In Figure 6, this can be seen to be true,
where the dashed black line represents the current voltage of
the processor. Since the later firings of actor k are not on
the critical path (refreshing initial tokens for next cycle), their
runtime can be extended by lowering the voltage. Additionally,
sdfo4 has been provided as an example exhibiting similar
results in Figure 7, Figure 8, and Figure 9.
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V. INNOVATION

We have created a new method for determining a sub-
optimal mapping and schedule for a SDF based upon various
PE and bus parameters. We have used a unique combination
of various methods, including list scheduling, genetic algo-
rithms, and accurate energy modeling with DVFS overhead.
Additionally, our final tool is configurable, allowing for diverse
architectures and many modifications to the optimization flow.
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Fig. 8: sdfo4, with no energy consideration, running with the
assumption of 3 buses and 4 processors, hence 3 bars and 4

sub-charts.

0 10 20 30 40 50

bu0

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

0 10 20 30 40 50

bu1

0 10 20 30 40 50

bu2

0 10 20 30 40 50
0

1
2

3

4

5

V
o
lt
a
g
e

pe0

0 10 20 30 40 50
0

1
2

3

4

5

V
o
lt
a
g
e

pe1

0 10 20 30 40 50
0

1
2

3

4

5

V
o
lt
a
g
e

pe2

0 10 20 30 40 50

Time

0

1
2

3

4

5

V
o
lt
a
g
e

pe3

Fig. 9: sdfo4, with energy optimization using DVFS

Finally, since our system supports SDFs, it is applicable in
both DSP and general processing environments (task graphs).

VI. FUTURE WORK

Currently, our initial tests have contained arbitrary repre-
sentations for processors and buses. While this provides a
proof of concept, these representations will eventually have
to be expanded, made more explicit, and tunable to different
processors and buses. Similarly, our final program and process
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needs to be further tested on a more diverse grouping of
SDFs, in order to understand its optimization effectiveness.
Furthermore, creating an ILP (integer linear programming) in
order to find optimal solutions so that the accuracy of the
program can be determined.

Presently, the bus communication module is not capable
of differentiating between processors, and as a result a bus
is used for every token produced. To improve the tool this
processor awareness will have to be added for this feature. We
think that this will be solvable with a two-pass list scheduler.
Taking unnecessary tokens off the bus will deflate run times
and improve accuracy, as well as allowing for buses to only
be connected to specific processors.

Additionally, in order to increase the convergence rate,
DVFS capabilities could be added to the list scheduler. The
GA normally does this randomly given enough time, but if we
add this capability to the scheduler, we can more intelligently
explore the problem space and the optimal individuals in the
local area should be reached more quickly. Similarly, firing
preemption could be added which would allow for firings to
better fit in to idle periods (with the comination of DVFS).
However, we are unsure if improving the list scheduler (since
it is used as a resolution function) will cause the program
to be attracted to local minima. Pipelining could be another
improvement which could be added to the system, allowing
for decreased cycle latency, but possibly less opportunity for
energy-optimization. Finally, in terms of the program, support
for multiprocessor and distributed environments would be
useful in order to decrease the runtime for finding optimal
results.

VII. CONCLUSION

Heterogeneous processor systems are increasingly a critical
addition to today’s mobile, energy-constrained devices. How-
ever, few gains can be achieved without optimal mapping of
processes to appropriate processors. In this paper we have pre-
sented a method for optimizing a SDF schedule and mapping
in terms of latency and energy. Our method uses accurate
latency and energy models, allowing for DVFS on multiple
processors. Additionally, communication between actor firings
is considered and allocated to various buses. In our initial
tests, we have recorded promising results of up to 38.5%
improvement in energy consumption with minimal effect on
the overall latency of the schedule.
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