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Node.js Asynchronous Compute-Bound
Multithreading

Nicholas Kelly

Abstract—We propose a system for asynchronous multithread-
ing in Node.js. By using annotations and extending V8 and
Node.js, common asynchronous paradigms can be accelerated
past the single-threaded model of Node.js. Our system extends
the ECMA 5.1 directive syntax to allow for compute-bound
annotations. Additionally, V8 is modified to allow Node.js to run
a function in a separate V8 instance (Isolate). Upon completion
of the compute-bound function, a callback is executed within the
main event loop of Node.js. In our initial results, we recorded
at least a 3x improvement (6x maximum) in speedup over a
grouping of V8 and custom compute-bound benchmarks on a
4-core Intel Core-i5 system.

I. INTRODUCTION

The Internet has moved into a new era of responsive web
applications. These are applications which require fast client
and server-side response to user interactions. On the client-
side, Javascript and HTML5 APIs facilitate the GUI transi-
tions, graphics, and other features. However, nearly all of the
interactions have server data associated with them, meaning
that the server response must be quick, possibly over a large
user-base. Since more Comet (e.g. AJAX) server interactions
are being used, requests are often short, sending database data
with little processing. In this case, backends such as Node.js
are becoming popular. Node.js utilizes asynchronous I/O in an
event-driven manner, allowing for a single-threaded web server
to have better response times than common threadpool based
solutions. Additionally, Node.js uses Googles V8 Javascript
engine to achieve good server-side performance while allowing
for an entire ecosystem of existing Javascript modules/appli-
cations.

However, data-mining and other compute-bound tasks (e.g.
clustering, graph analysis, etc) are becoming widespread,
especially in websites with a social component. While map-
reduce solutions are widespread, many sites still use Node.js
as their web backend. Since Node.js is only non-blocking for
I/O-bound tasks, compute-bound tasks block other HTTP re-
quests from being fulfilled (especially if they have a compute-
bound component as well). Thus, in this paper we propose a
method of extending event-driven model of Node.js to include
compute-bound tasks. It utilizes a function callback similar to
the built-in Node.js asynchronous I/O methods. Additionally,
it extends the ECMAScript 5.1 standard [1] to include a “use
cpu bound” directive which is used to annotate which methods
are compute-bound.

II. BACKGROUND

A. Node.js

Node.js [2] supports Asynchronous I/O in javascript using
an event-driven model. Essentially, Node.js is composed of
three main parts: Node.js C++/Javascript APIs, the event
loop, and V8. The Node.js C++ and Javascript APIs expose
missing backend functionality to developers such as file I/O,
networking, cryptography, and more. Many of these APIs are
essentially Javascript bindings for C++ functions, allowing
for high performance for some tasks such as cryptography.
Node.js uses the high-performance V8 Javascript engine (also
used in Google Chrome) for Javascript parsing, compila-
tion, and binding. This effectively allows developers to use
Javascript modules or libraries from client-side applications
or NPM (Node Package Manager). For the event loop, the
creators of Node.js (Joylet) have created a custom library
(libuv) for asynchronous I/O. The event loop essentially keeps
a queue of I/O tasks which are still “running”. In the event
loop, each task is monitored, waiting for new events. Upon
the completion of a task, an event is fired which posts a
callback function to be called within the event loop. Since the
event loop is serial, if multiple events occur at the same time,
or a callback from another task is still being processed, the
events/tasks are handled serially (blocking). Thus, if a callback
takes a long time to complete, it can hold up the whole event
loop.

B. Libuv

As discussed, libuv [3] is the event loop and asynchronous
I/O library used in Node.js (and other applications). It features
asynchronous file I/O, TCP/UDP sockets, and DNS resolution.
Even though the event loop is single-threaded, tasks or I/O is
essentially run in a threadpool since most OSs do not handle
asynchronous I/O well (e.g. a non-blocking read will still
require a “spinning” thread). Thus, libuv additionally supports
many threading features including threadpools, work queues,
synchronization, and IPC. More importantly, libuv supports
worker-threads which allows a function to be added to a work
queue (event loop) and a callback to be associated with it.
Using pthreads, libuv will create a new thread for the function
and upon completion, similar to the asynchronous I/O tasks,
a callback is posted to the event loop. This effectively allows
for seamless introduction of additional (i.e. compute-bound)
tasks into the libuv event loop.
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C. V8 Javascript Engine
V8 [4] is the Javascript engine created by Google for their

popular web-browser, Chrome. Since it is a C++ application,
it allows for developers to embed V8 into their current project,
as Node.js did. Unlike many Just-in-time (JIT) compilers, V8
does not use interpretation. Instead, it has multiple levels of
code generation. The first (FullCodeGen) quickly generates
native code without any optimizations. When a function be-
comes hot enough, V8s optimizing compiler (either Crankshaft
or TurboFan) is used. Profiling comes from inline caches (ICs)
and profiling ticks. Inline caches are used to help support
the dynamic and prototype-based nature of Javascript. Since
type information can change at anytime, V8 needs to be
responsive to changes but still be able to optimize code
sections for the common-case. Thus, ICs keep track of variable
type consistency, as well as other information such as hidden
classes (optimized classes). Additionally, profiling information
is gathered in the granularity of ticks, effectively keeping
track of relative function execution. Crankshaft uses IC and
profiling data along with heuristics to make decisions on what
functions to optimize. Functions which are executed often
and have unchanging variable types are prime candidates for
optimization.

III. RELATED WORK

There are some examples of previous work which imple-
ment multithreading in an asynchronous manner. One example
is the Node.js module Threads gogo [5] which implements
asynchronous threading in Node.js. Similar to our solution,
it utilizes separate Isolates for each thread and compiles the
passed function with a registered callback. However, their
solution does not utilize the existing libuv event loop and
threadpool. Instead, they use pthreads directly and define their
own threadpool. Additionally, the module must be included
with require, the module initialized, and the threaded function
explicitly defined in eval syntax (as a string). Thus, our method
allows for quick addition into existing codebase (due to V8
support) as well as the possibility for profiling to determine
which functions are compute-bound.

Additionally, this work is similar to the native Node.js
cluster module. The module is similar to a load balancer where
multiple Node.js processes are spawned for a single server. A
master process accepts each HTTP request and forwards it to
a certain Node.js cluster process (depending on load balancing
policies). However, each Node.js cluster process has its own
event loop since it is essentially a separate Node.js instance.
While the cluster module could possibly have a faster response
time than our initial implementation, it has higher memory
usage and less potential for IPC. A similar solution is nginx
[6] which is a web-server as well as a top performing load
balancer. It additional has the possibility to be the master
process for the Node.js cluster module.

In general there are other automatic multithreading im-
plementations, HELIX [7] is an example. Campanoni, et al.
implemented a system for automatically utilizing the inherent
parallelism in programs. For example, HELIX parallelizes
each iteration of a loop, handling dependencies through com-
munication and helper threads to prefetch values. Of course,

not every thread can be adequately parallelized; thus, HELIX
defines a set of heuristics which are used to dynamically select
loops to parallelize. Additionally, Auslander, et al. [8] intro-
duce a dynamic compilation method which uses annotations
and templates. This is effectively similar to our method of
using annotation to flag compute-bound functions. Further-
more, their templates could be similar to the asynchronous
(callback) function paradigm in Javascript which is utilized in
our method.
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Fig. 1: Asychronous Multithreading Process

IV. METHODS

A. Overall System

The overall system consists of modifications and usage of
Node.js, V8, and libuv. Modifications to V8 were done in
order to support directive parsing (annotations) and “function-
handoff.” Many of the modifications and additions were done
in Node.js to add the ability to launch libuv worker threads in
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the main event loop. As seen in Figure 1, Node.js facilitates
where functions/scripts are run (main thread or threadpool).
V8 is used for parsing, compiling, and running Javascript
functions and scripts. Additionally, libuv is used to schedule
worker threads in a threadpool and post callbacks to Node.js.

B. Annotations

In order to multithread compute-bound functions, the system
must first know which functions are compute-bound. We
decided to initially support an annotation-based method, since
developers have a good understanding of the run times of
functions in their application. Additionally, we could have had
a profiling-based approach, where each function (or flagged
function) is profiled during runtime. This approach is dis-
cussed in greater detail in future work. Since EMCAScript
5.1 introduced the support for directives (namely “use strict”),
we decided to use the same syntax (as asm.js did). Thus, we
proposed to use “use cpu bound” which the developer puts
in the function-scope that they intend to allow multithreading.
This directive is parsed in V8 and propagates to all major
function objects, allowing for usage in multiple areas post-
parse time.

C. Function Interruption and Handoff

In order to support asynchronous multithreading, a function
needs to be “handed off” or redirected to Node.js. We take
this approach due to the limited multithreading capabilities of
V8. While V8 supports multithreading, it only supports one
thread in one Isolate at a time. In general, V8 contains:

• Isolates: an isolated instance of the V8 engine, including
garbage collection, code, c ntext, and other states

• Contexts: an execution context for objects and functions
associated with an Isolate

• Handles: an object reference which is associated with an
Isolate or Context

• Scripts: compiled scripts, often associated with a Context
• Locker/Unlocker: used to lock and unlock Isolates for

multithreading purposes
Additionally, there seems to be some initial support for

queuing functions to be run in an Isolate and supporting a
callback, but it is experimental. Thus, due to the above issues,
the threading is not done within V8 internally, but instead
facilitated by Node.js and libuv. However, this means that
V8 must halt upon reaching a compute-bound function and
redirect the execution to Node.js.

V8 as well as many other JIT compilers use a method
of code discovery known as lazy-parsing and lazy-compiling
(unless disabled). Effectively, this means that V8 only parses
and compiles functions when they are needed (i.e. upon
calling). Thus, a function call in the global scope might not be
known to be compute-bound when it is initially parsed. Only
when it is called and its function is parsed/compiled is the
annotation known. Because of this limitation, function handoff
must occur at the beginning of the function. The advantage to
this method is there is less code expansion, since handoff code
only needs to be inserted once for each function. Essentially,

function:
; Function headers
; Push stack frame
jz not_cpu_bound
call FunctionHandoff
jmp return

not_cpu_bound:
; Function implementation

return:
ret
; Function codestub

Listing 1: Function macro-assembly

function function_name(<args...>, callback_function)
{
"use cpu_bound";
// Code
return callback_function(<args...>);

}

Listing 2: Asynchronous function format

the handoff contains some modifications to the V8 macro-
assembler. These modifications are outlined in Listing 1. If the
function is compute-bound it jumps into the runtime, hands
off the function information to Node.js, and then skips the
function by skipping to the end. As outlined in the next section,
the asynchronous function format does return any data, but
instead pass it on to the callback function. Upon inspection, it
seems that V8 only creates one return statement per function.
If there are multiple statements, the control flow simply jumps
to the postamble. Thus, we can skip a function be simply
skipping to the return statement.

The runtime function is used to pass the function data from
V8 to Node.js through a specified handoff function associated
with the Isolate. Function data, including arguments, function
code, the name of the function, and its binding, is gathered
from the stack frame and passed to Node.js. After, Node.js
adds the function to libuv queue, the runtime function returns
and the main execution continues (skipping over the function).
Conversely, if the function was not compute-bound, it would
simply run normally in the main execution context.

D. Asynchronous Compute Functions

When function data is handed off to Node.js, a new “Com-
puteThread” is created for the worker which includes cloning
some of the data as well as creating a new Isolate and Context
for the function to be run in. Unfortunately, due to the way
handles and data are associated with Isolates, some raw data
must be copied directly so it can be used at runtime. In this
case, the function code is copied to the new isolate and a
function call string is constructed from the arguments and
function name. The format in Listing 2 is what is assumed
for an asynchronous compute-bound function.

Thus, it is assumed that the last argument which is a
function is a callback. After all data is stored, the run function
is queued in the libuv worker queue (event loop). When
a free thread is available, the run function is called which
initializes the thread for execution. The Isolate and Context
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var __return__;
(function() {

function __callback__() {
__return__ = { recv: this, args: arguments };

}
function_name(<args...>, __callback__);
return __return__;

})();

Listing 3: Function wrapper

are initialized and locked to the thread, and the function
script(s) are compiled and run. In order to simplify running
and gathering results, the following container function outlined
in Listing 3 is used.

Instead of the original callback function being used, it is
substituted for “ callback ” which captures the scope/bind-
ing of the callback and its arguments. Thus, when the function
is executed in the V8 Isolate, the data is returned without V8
modifications. Upon completion, libuv allows a callback/after
function to be called, which in this case will execute the actual
Javascript callback function with the returned data.

E. Callbacks

When the callback/after function for the libuv worker has
been called, it has effectively joined the main-thread of execu-
tion in the event loop. At this point, existing callback functions
in Node.js are used in order to execute the Javascript callback
function on the main Isolate with the received data from the
worker. After the callback is complete, all the worker data,
including the Isolate, Context, and cloned data, is deleted and
collected.

V. RESULTS

In order to gather performance results, several V8 bench-
marks (rsa en, delta, richards, and ray) were wrapped in the
asynchronous function format expected by the system (with
the “use cpu bound” annotation inserted). Additionally, two
custom benchmarks were created (fib and mapreduce) which
are essentially compute-bound (fibonacci and mapreduce for-
mulas, respectively). Each workload essentially calls the corre-
sponding benchmark 16 times serially in with callbacks given
for each. These benchmarks were run on a 4-core, Core-i5
(Sandy Bridge) system with varying amounts of threads for
the libuv threadpool. The results are shown in Figure 2. As
expected, for asynchronous (parallelizable) workloads perform
very well on the modified system with asynchronous multi-
threading for compute-bound tasks. All workloads received
at least 3x performance improvement when compared to the
baseline (unmodified Node.js). Some workloads even see up to
6x speedup. However, since the system under test is a 4-core
system (without hyperthreading), greater than 4 threads yields
no additional improvement. However, it would be expected to
yield significant gains on systems with more cores.

Additionally, the same benchmarks were wrapped into a
simple HTTP web-server in order to test the performance
(response time) of the system in a more typical Node.js
use case. These tests use the built-in HTTP functionality
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Fig. 2: V8 and Custom Benchmarks

of Node.js which is asynchronous in terms of data transfer,
but not data generation. Since most websites online are not
static (e.g. static HTML file) but instead dynamic (e.g. PH-
P/Python/Javascript), this is a very important test to identify
practicality. In order to stress the HTTP servers, Apache Bench
was used to make HTTP (GET) requests. Figure 3 shows the
overall results of the HTTP tests in terms of the response
time speedup of 90% of requests (nearly worst case). In each
test, 1000 total requests are made in increments of 1, 25, 50,
75, and 100 concurrent requests. Concurrent requests would
represent multiple users accessing the website at the same
time (which can be in the millions for large sites). While
not indicated in the initial graphs, there is some inherent
overhead in the current implementation. Additional time and
memory is expended in order to copy over data, compile the
asynchronous function, and transfer results. Induced overhead
can be seen for rsa en, mapreduce, and fib for 1 concurrent
request. Since the this effectively forces serialization, it reveals
the overhead in the multithreading strategy. Interestingly, there
is still performance improvement for the other workloads,
which may be due to the Node.js HTTP library or more
architectural reasons (e.g. local L1 caches). Otherwise, for
multiple concurrent requests, the performance improvement is
similar to the previous results, yielding at least 3x performance
improvement. As expected, little improvement occurs over 25
concurrent requests since it is over 4 threads (default for all
tests).

In terms of memory usage, it is expected that the asyn-
chronous multithreading improvement will increase memory
usage. Primarily, this effect is due to creating multiple Isolates
each with their own code and context. Thus, the peak memory
for the process depends on the execution rate the asynchronous
functions and how long each Isolate is resident in memory.
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Fig. 3: HTTP-Based Benchmarks (Response speedup)

Figure 4 shows the relative peak memory usage for each
workload over multiple threads. As expected, there is addi-
tional memory usage over the unmodified Node.js. However,
the memory does not scale linearly for the amount of threads
used which is probably due to the time each thread is resident.
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VI. FUTURE WORK

Currently, there are some limitations with the initial im-
plementation. Firstly, only code within the function bounds

can be called. Helper functions included with “require()” or
at higher scope cannot be called since only the function code
is compiled in a new Isolate. In order to solve this, a pool
of Isolates could be created which contains compiled/parsed
code from the main program. Unfortunately, due to lazy-
compilation, the code needs to be run as well in order to
propagate into the Context. Additionally, issues would arise
when Isolates get out of synchronization, meaning discovered
code is different than the main Isolate or other Isolates. If lazy
compilation can be disabled at the Isolate-level or script-level
it could fix code discovery issues.

Moving objects across Isolates is currently unsupported
in V8. While it seems that Handles associated with another
Isolate can be used in the main Isolate, the other Isolate
cannot be running in a thread while the variable are accessed
(which conflicts with the above solution). Additionally, some
objects may be Isolate-specific. For example, a function object
will contain different pointers, and possibly even slightly
different data than its equivalent on another Isolate. Thus,
some objects cannot be passed (without synchronization or
locking) or copied, making it incredibly difficult to support
a wide range of objects for both input and output. Currently,
input arguments are converted to string equivalents (limited on
type and depth), and output arguments are sourced from the
thread Isolate. Another important object which is not currently
included is the binding of the function (i.e. “this”). Unfortu-
nately it suffers from the same issues as above, especially
since can potentially be a large object. Additionally, since
it potentially points to function definitions it cannot easily
be copied to another Isolate. However, it is potentially very
useful for fixing the first issue since it would contain function
definitions. Unfortunately, possibly the only existing method
for transferring objects to other Isolates is through serialization
(e.g. JSON). Although, it becomes cumbersome with large
objects and potentially impossible.

Future work could also include using profiling to flag func-
tions for asynchronous multithreading instead of annotations.
In this case, a counter would need to be associated with
each functions shared info. Upon the run of a function, the
completion time would be recorded using a lightweight in-
struction (i.e. rdtsc in x86) or a simple runtime function. Then
based upon certain heuristics, a function would be flagged as
compute-bound and run in a new thread. In addition to the
current annotation syntax, options to allow threading (“use
try cpu bound”) and forbid threading (“use no cpu bound”)
could be added. Furthermore, multiple levels of compute-
bounding could be added in the form of separate pools or
queues each with a different amount of dedicated threads.
Since Node.js is based upon one event loop, and therefore
one threadpool, additional pools or event loops would possibly
need to be added.

VII. CONCLUSION

In this work, we proposed a system for asynchronous
multithreading in Node.js. It uses ECMA 5.1 directives (“use
cpu bound”) in order flag compute-bound functions. Then
utilizing V8 and libuv, flagged functions are run in a separate
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thread within the main libuv threadpool. In order to make the
transition, the generated assembly was modified to trap into
the VM and handoff the function to Node.js. Libuv, the main
Node.js event loop, is used to create a work queue (threadpool)
for each compute-bound function. After execution, a callback
is executed within the Node.js event loop with the results
(arguments) from the multithreaded function. In our initial
results, all V8 and custom benchmarks saw at least a 3x
speedup improvement in traditional and HTTP workloads
with a maximum of 6x improvement. While there are some
limitations in terms of input and output (arguments) with
the current system, there is the possibility of improvement.
In particular, arguments could be serialized and functions
could be automatically flagged based upon dynamic profiling
data. Additionally, since the asynchronous-function paradigm
is widespread in Javascript (especially in Node.js), our solution
proves to be practical for emerging, compute-bound web-
services.
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