
1

Realtime GPU Raytracing
Minxuan Guo, Nicholas Kelly, Liang Xia

I. INTRODUCTION

In the field of realtime graphics, most scenes are produced
through a method called Rasterization. During rasterization,
the entire scene is transformed based upon the camera view-
port. In this manner, all rays from the camera are parallel to
each other and object intersection becomes fast and regular.
While this method is sufficient for a 3D to 2D projection
of the scene, raytracing could be used to achieve more
complex effects such as dynamic shadows, reflection, and
refraction. Raytracing is a method that approximates physical
light transport by casting rays not only from the camera
(primary rays), but also for reflection, refraction, and light
visibility (secondary rays). It is heavily used in animation
and movie production due to the achievable realism and
flexibility for various effects. However, raytracing is not nearly
as uniform rasterization due to the fact that rays can be cast
from any location in the scene where they are only cast from
the camera in rasterization. Additionally, since rasterization
is a very uniform process, a pipeline with special-purpose
hardware exists in modern GPUs which allows for realtime
rendering of 3D scenes. Unfortunately, most GPUs do not
have raytracing hardware and many raytracers are usually
implemented in CPUs (or Many-Integrated-Cores such as the
Xeon Phi) due to the non-uniform, parallel nature of the
implementation. Although, due to the programmability and
availability of modern GPUs, raytracers are recently being
implemented in CUDA or GLSL (OpenGL). While these solu-
tions attempt to utilize the inherent parallelism of raytracing,
achieving realtime performance is often difficult due to how
GPUs handle divergence. Thus, many techniques have been
proposed for load balancing, collision detection, and reducing
the overall work in order to reduce render times. In this paper,
we aim to explore current methods for realtime raytracing
and attempt to elaborate upon them in order to produce a
near realtime implementation. Additionally, while some prior
work only implement partial features (e.g. only primary and
shadow rays), we aim to support primary and all secondary
(refraction, reflection, light/shadow) rays as well as arbitrary
triangle meshes and textures. We decided to implement the
final raytracer in CUDA due to the availability of NVIDIA
hardware and their toolset.

II. RELATED WORK

Due to the irregular nature of raytracing and the need
for efficient collision checking, spatial partitioning structures
are usually utilized. These structures adaptively partition the
geometry within a scene in a tree-like fashion. Thus, instead
of testing every triangle for ray collisions, the tree is traversed
with more efficient collision checks (e.g. bounding boxes)

and only select leaf-nodes are tested for triangle-ray intersec-
tions. However, these structures contain an initial overhead
to produce and the construction time is directly proportional
to the intersection speedup (quality of the structure). Thus, in
production-quality raytracers, more time is spent on construct-
ing a balanced tree due to the long render times. Although,
in our case we need fast tree construction if we intend to
support near-realtime operation (with animation). Lauterbach,
et al [4] introduce a fast BVH (bounding volume hierarchy)
construction method which use a Morton code (Z-ordering)
to quickly partition and construct the BVH. In addition, the
method they introduce is completely parallel and fits the
CUDA execution model well. Thus, we use this method for
our BVH construction (which we elaborate on later).

The classic traversal for a raytracer follows a recursive
or stack-based implementation. However, both of these ap-
proaches are prohibitive in a GPU where we aim for efficient
memory bandwidth. Afra and Szirmay-Kalos [2] discuss a
“stackless” traversal mechanism where a bit-vector is used
instead of a full stack which contains information about the
state of the traversal. Instead of having a full stack and
performing a stack pop, they traverse back up the tree and
inspect the bit-vector. Each time there is a node traversal up
or down, the stack is shifted right or left, respectively. When
visiting a child, if the other node will need to be traverse later,
a “1” is shifted into the bit-vector. Then, when the ray traverses
up the tree, it goes down the opposite child and resets that bit
in the bit-vector. Additionally, the bit-vector indicates when
there is no more work to be done as it will be zero in that
case.

While raytracing is a non-uniform rendering solution, many
of the primary and shadow rays are usually fairly consistent
in terms of origin and direction. There has been much prior
work focusing on ray-packetization where rays are combined
into one and traced until they effectively diverge. Garanzha
[1] uses ray-packetization as well as ray-ordering. In their
implementation, they first compute “hashes” for each ray. A
hash contains information about the direction and origin of the
ray. In particular, they quantize the 3D direction and origin into
a 32-bit hashed value. They then perform stream-compression
in order to reduce the amount of elements which are sorted.
After sorting and decompressing the ray hashes, frustums are
created for each hash grouping. A frustum is similar to a
cone but contains two axis-aligned rectangles which indicate
the divergence or spread of the ray-packet. These packets are
traced through the BVH, gathering possible leaf-nodes for later
intersection testing. After all packets are traced, the triangles
are tested for ray intersections in parallel in order of nearest
distance (in order to minimize divergence). While there is
possibly more divergence for reflection and refraction rays, eye
and shadow rays will often benefit with improved parallelism.



2

Additionally, they are able to group arbitrary rays due to their
parallel hashing and sorting method. For our purposes, we
employ a similar hash sorting mechanism, but focus on a
different divergence-avoidance method (Treelets) instead of
packetization.

For more incoherent rays (reflection and refraction), Timo
and Tero [3] discuss the usage of “Treelets” in their raytracer
architecture analysis. Treelets are type of graph partitioning
specific to trees where sub-trees or node groupings are created.
This grouping is useful for creating work queues in spatial
partitioning trees (such as a BVH). In their implementa-
tion (simulation), treelets are constructed using a bottom-
up dynamic programming and a top-down, greedy approach
which seeks to maximize the surface area of the treelet
while targeting a maximum size. These treelets are used as
work queues for the sections of the treelet and since rays
can potentially be in any part of the scene during traversal,
they are an unbiased method of improving parallelism and
locality. Since the paper focuses on architectural additions and
analysis, they also propose fine-grained scheduling, launching,
and compaction of work to warps. Many of the suggestions
of that they provide need architectural features for efficient
implementation but we use the idea of treelets in order to
minimize divergence and improve locality.

III. DESIGN

A. Overview

In order to render animated scenes in realtime, we decided
to re-generate the acceleration structure in realtime. We did
not explore tree-update methods, since re-generation is simpler
method of enabling animations instead. We decided to use a
BVH tree for our acceleration structure due to the relative
ease of construction compared to a KD-Tree. Our research
into prior work indicated that choosing KD-Tree split planes
was a more difficult algorithm to parallelize.

Our ray-tracer has two main parts, BVH construction and
BVH tree traversal. We implemented the fast BVH tree con-
struction technique described by Karras [5]. Our tree traversal
algorithm utilizes treelets [3], ray sorting [1] and stackless
BVH concepts [2]. The flowchart (Figure 1) illustrates our
algorithm. The following sections describe each step in more
detail.

B. BVH-Tree Construction

We base our BVH-Tree construction on Linear BVH
(LBVH) algorithm [4] to take full advantage of parallelism.
A triangle array is sorted in Morton code order to improve
locality for further steps. BVH-Tree construction is conducted
in three steps: primitive sorting, leaf-node construction, and
internal-node construction.

1) Primitive Sorting: The first step of BVH construction
is to calculate a bounding box array to start with. The Linear
BVH algorithm computes this array by sorting primitives with
morton code. Each primitive is assigned with a morton code,
representing its position along the z-order curve. Since the
morton code can be calculated using the geometric coordinates
of the primitive, assigning morton code to primitives can

BVH Tree Construction

BVH Treelet Partitioning

Sort BVH by Treelet 
(sort_bvh)

More Rays?

(treeletSearch)

In Treelet?

Traversal Done?

Secondary Ray Generation

Generate Ray Orientation Hash

New Eye Ray Generation

Find next intersected child node

Triangle intersection

Load Treelet to Shared Memory

No

Yes

Yes

No
Update Treelet Target

(treelet_queues_prepare)

Load Scene (load_obj)

Output Image (save)

Sort Rays by Treelet and Ray 
Orientation

Create threadBlock partitions by 
treelet

Mark Terminated Rays Queue 
Entries for New Eye Ray Generation

Cull Empty Ray Queue Entries

Yes

No

Fig. 1: Raytracer operation

be parallelized to N threads (N = numberofprimitives).
Parallel radix sorting is used to sort primitives. The bounding
box of each primitive is sorted along with primitives for further
usage.

2) Leaf-node Construction: Leaf-nodes wrap a small set
of primitives in their bounding boxes. Since the morton code
indicates primitive’s position along z-order curve, we can
group primitives with same morton code to a leaf-node. If
the scene is sparse, the morton code can be truncated before
grouping to keep number of leaf-nodes reasonable and to
reduce leaf-node construction time. After previous primitive
sorting, primitives are in a linear morton-code order, and all
primitives in a leaf-node should sit in a linear range. Thus,
we only need to find the start and end position of leaf-nodes
to determine what primitives are warped in each leaf-node.
Therefore we can still break the work to N threads, each thread



3

responsible for decide whether its primitive is a start point of
a leaf-node. With such information, an inclusive scan is used
to determine leaf-node number each starting point belongs to.

Getting bounding box of a leaf-node can be broke to the
leaf-node granularity. Each thread take one leaf-node, reading
the bounding box of primitives in the leaf-node and get the
bounding box of that leaf-node.

3) Internal-node Construction: The goal of internal-node
construction is to get each node’s children and parent. internal-
nodes enclose multiple leaf-nodes or internal-nodes according
to its position in the hierarchy. Unlike leaf-nodes, internal-
nodes has an inherent tree structure, posing great challenge to
parallelize construction.

To solve this problem, we adapt a specific tree layout [5] to
indexing internal-nodes. According to this layout, leaf-nodes
and internal-nodes are stored in two separate arrays. leaf-nodes
have index from 0 to (leafNum − 1), internal-nodes have
index from 0 to (leafNum− 2). The index of internal-nodes
are assigned with following rules:

1) internal-node 0 is the root node
2) if one internal-node splits at leaf-node i, its left child and

right child would have index i and (i+1) respectively, as
shown in Figure 2

internal[i] internal[i+1]

leaf[i] leaf[i+1]

Fig. 2: Indexing rule for internal-nodes

With the rules above, we can construct the internal-node
hierarchy if knowing each internal-node’s split point. Given the
consideration that morton code indicates spatial position, we
split the internal-node at the point where morton code changes
most significantly in the range. Hence we break internal-node
construction into two task: find coverage range for all internal-
nodes and find the split point of each range.

Because of the linear organized primitives, each internal-
node warps consecutive leaf-nodes. Like leaf-node construc-
tion, we only need to know the starting leaf-node and ending
leaf-node to get what’s covered by each internal-node. From
the indexing rules above we can draw the conclusion that leaf-
node i is either the starting leaf-node or the ending leaf-node of
internal-node i. To get the other end of internal-node’s range,
we start from the knowing end and look at its neighbour to find
less significant change in morton codes. After getting coverage
range, we only need to read morton code of leaf-nodes in that
range to find a point where adjacent morton bits varies most
significantly.

In the process described above, each internal-node would
only need to read leaf-node array to decide its split and

children. Thus the process of each internal-node is independent
to each other despite of the recursive tree structure. Therefore,
we break the process of getting internal-nodes hierarchy into
the granularity of internal-nodes.

Unlike the process of getting internal-nodes hierarchy, get-
ting bounding box is inherently sequential since the bound-
ing box calculation of children need to be finished before
bounding box calculation of parent starts. However, bounding
box calculation of nodes without parental relationship can be
parallelized. To take advantage of this parallelism, we starts
with leafNum threads. Each threads starts with a leaf-node
and climb up the hierarchy after finishing current calculation.
Since each node could only calculate its bounding box after
its two children are done, the first thread to enter a node
should terminates right after entering. The second thread to
enter performs the calculation and continues climbing up. To
implement such scheme, we introduce an atomic variable in
internal-node object. Each thread would do an atomic compare
and set operation on the atomic variable to decide whether it
should calculate bounding box or terminate.

T0 T2

T0

T3 T4

T1

T2 T3

T3

Fig. 3: Bounding box calculation: two threads trying to enter
a internal-node, the first one terminates; the second one

performs bounding box calculation and trying to entering
parent node.

C. BVH-Tree Traversal

BVH-tree traversal was the largest component of our ray-
tracing work. It was frequently over 50% of the runtime of our
frame and over 95% for a majority of our project’s lifetime.
As such, it received the most optimization focus at both a
macro (ray/tree organization) and micro (algorithm) level. This
section will focus on the algorithmic optimizations to the
treelet traversal code.

We break our full BVH-tree into smaller “treelets” to take
advantage of the parallel nature of the GPU [3]. Each of these
treelets is sized to fit within the shared memory allocation
of a threadBlock. Eye rays are generated in Z-pattern order
in order to make sure each thread is performing a similar
treelet traversal. Each thread owns a single ray and passes
these rays between treelets as the ray traversal takes place. The
block of work is organized as a list of treelets and the rays



4

whi le i n t r e e l e t
i n t e r s e c t c u r r e n t node
i f node i s l e a f

i n t e r s e c t p r i m i t i v e s

whi le i n t r e e l e t
whi le i n n e r node

go t o n e x t c h i l d
i f node i s l e a f

i n t e r s e c t p r i m i t i v e s

that are passing through them. Each threadBlock is responsible
for a chunk of the full list of in-flight rays. Our algorithm
borrows “stackless” traversal concepts from Afra [2] to reduce
memory resource requirements. We eschew a full tree stack,
which would allow more efficient tree traversal, in favor of a
light weight stack vector. This reduction in resources allows us
to process more rays in parallel and maximize the thread-level
parallelism of the GPU.

Our initial implementation of the treelet traversal algorithm
was very naive. Each thread operated on a single node in
lock-step before proceeding to the following node. Our code
structure came from CPU programming roots and looked like
the following:

This algorithm structure traversed the treelet as shown in
Figure 4 (a). Because each thread was executed in lock-
step, the hard work (primitive intersection) was almost never
executed in parallel. As you will see in our results, its very rare
for threads within a warp to execute leaf-node traversal at the
same points of the treelet. Analysis of the code execution in
NVPROF revealed a lot of divergence within our warps. leaf-
node traversals are the longest latency operation in the treelet
search process. This is because the primitives are stored in
global memory and there is no way to reliably store them in
shared memory or improve the spatial locality of accessing
them. Ensuring that leaf-node traversal happens in parallel is
paramount to treelet search performance.

In order to reduce warp divergence, we implemented the
while-while algorithm structure [2]. The goal here is to ensure
that every thread has a chance to arrive at a point in the treelet
where primitive intersection is done. This allows all threads
that have primitive intersection work to do them in parallel.
As you can see in Figure 4 (b), this method allows the longer
latency work to be parallelized while the easier (inner node
intersection) work is allowed to be executed out of sync across
the threads. Our algorithm performs all node-traversal within
a single while loop as illustrated in the pseudo code below.

Restructuring the code in this way fixed our warp divergence
issue. However, warp occupancy was still extremely low (max
occupancy ¡ 50%). This was because we were using so many
register resources that we could not fit the maximum number
of thread blocks into a core. A lot of work was done to
reduce register usage to try to get more thread blocks to
fit within a core. We tried using volatile and restrict
keywords, code optimizations and the -maxrregcount compiler
option. While we did improve register usage slightly (from 63

(a) (b)

warp warp

T
im

e
 a

n
d

L
o

o
p

 I
te

ra
ti
o

n

Fig. 4: Divergence Reduction

per thread to 52), it was not enough. Additionally, most of
our efforts, especially the -maxrregcount option, dramatically
increased register spills. When data cannot fit in register space,
the compiler extends the register space with “local” memory
space. This space is local in the sense that each thread has
its own area, however, the data is treated as if it were stored
in global memory. Register spills increase cache contention
and global memory traffic, hurting overall performance. The
treelet traversal and triangle intersection algorithm is simply
too large to reduce. In the end, global memory usage increases
nullified any gains from register usage reduction.

Instead, we took a different approach. We focused on
reducing global memory usage via register and shared memory
usage. In addition to storing the current treelet, we also stored
any leaf-nodes and treelet roots that would be necessary to
the traversal of the current treelet in shared memory. Even
though this tripled our shared memory usage, it also eliminated
the need for global memory pointers throughout the bulk
of our treelet search algorithm. With the bulk of our global
memory accesses happening at the start and end of the treelet
search, our performance increased dramatically. We were able
to amortize long-latency global memory accesses with larger
amounts of computation work. This was the final optimization
that allowed us to hit frame-rates that approach “realtime”
status.

D. Load Balancing

Due to the incoherency of reflection and refraction rays
and the non-uniform execution of ray traversal, we used the
concept of treelets for load balancing. Treelets are constructed



5

in a simple, parallel manner. Each treelet effectively has a
root node which can be determined independently using the
depth of the node and the amount of nodes below it. Basically,
root nodes are statically defined by a depth divisor, where
every Nth depth is a root node. Additionally, in order to avoid
small treelets, a minimum treelet size is specified which allows
smaller treelets to be merged into the level above them. These
treelets are used to complete the ray traversal process in a bulk-
synchronous manner, with load-balancing and ray generation
at each step. During traversal, each ray flags which treelet
they will visit next in the ray treelet queue. Compared to
Timo and Tero [3], we implement work queues using parallel
primitives such as radix sort and exclusive scan. In current
GPUs it is difficult to do the fine-grain scheduling without
architectural support for efficient queue management. Thus
rays are traversed until they hit a treelet-boundary, where they
are then sorted and put into new treelet queues. The queuing
process consists of (see Figure 5):

1) Ray treelet queue tagging (which treelet the ray is going
to next)

2) Hash ray treelets by direction and origin
3) Sorting ray treelets and a ray mapping
4) Flagging queue boundaries
5) Exclusive scan of flags
6) Creation of work queues (treelet ID, starting index,

length)
These work queues not only define ray-treelet assignment,

but also the new generation of eye rays. It is important to note
that each queue has a fixed size which is equal to the amount of
threads in a thread-block. Thus, there are some inefficiencies
since thread-blocks must have a constant size, but for most of
the execution, queues will be saturated with rays. Since the
traversal kernel is launched with the exact amount of queues
each time, the only loss of utilization (in terms of launching)
is leftover room in queue for a thread-block. In this case, the
thread-block size can be set small enough so the losses are
minimal.

Ray treelet mapping

Ray orientation

Ray direction hash and sort

eye ray generation treelet 1 treelet 2 treelet 3 treelet 4

Fig. 5: Queuing process

Since we are doing a sort of treelets, we can take advantage
of the sort to also group rays within a treelet by origin and
direction. Similar to the approach taken by Garanzha [1], we
create a hash based upon the 3D origin and direction of the
ray. The hash is then shifted on the beginning of the treelet
ID and then removed at the creation of the work queues. This
technique aims to minimize divergence within a warp since the
rays being processed are approximately in the same position
and direction. Hashing is primarily for reflection and refraction

rays; however, it can also prevent shadow and eye rays from
drifting during sorting.

E. Secondary Rays and Shading
We handle secondary ray generation in a way that controls

the non-deterministic problem of scattering rays and allows us
to maximize the utilization of the ray queue. Each time a ray
bounces, its ability to generate secondary rays is dependent
on deterministic factors like ray bounce depth or light source
count and non-deterministic factors like material properties.
We wanted to avoid tracing rays that would not contribute to
the overall image. The naive method is to create all reflection,
refraction and shadow rays when a ray intersects an object and
ignore ray intersections with no visible color contribution. This
is inefficient. An alternative method is only generate relevant
rays. However, determining this when an intersection occurs
and allocating an appropriate number of rays is difficult when
thousands of threads are attempting to allocate the same shared
ray queue resource at the same time.

Our solution involves a ray stack that generates one sec-
ondary ray at a time and allows for a sufficiently large number
of ray bounces. This makes the problem of secondary ray
generation deterministic and also allows us to cull irrelevant
rays. Each secondary ray is generated in place in the ray queue
and a ray does not relinquish its ray queue entry until every
secondary rays has terminated. This approach also has the
added benefit of avoiding atomic operations on pixel blending
operations.

Reflect Refract Light 1 Light 2 Light 3

Reflect Refract Light 1 Light 2 Light 3

Reflect Refract Light 1 Light 2 Light 3

Active Ray (stack 0)

Eye Ray

Refract Ray 
(stack 2)

Reflect Ray
(stack 1)

2

0

1

pending rays

terminated rays

…

Fig. 6: Ray Stack

We applied the warp balancing concepts explored in the
BVH traversal code to our ray generation function. The
slightly cheaper algorithm to calculate secondary ray con-
tribution is computed up-front for every possible secondary
ray. Secondary ray generation depends on the material of
the intersected triangle. A bit-vector is kept that tracks the
number of secondary rays that this intersection has to produce.
This bit-vector is used to determine which secondary rays go
through the more expensive ray generation calculations. Sec-
ondary ray traversal occurs in a depth-first order as illustrated
in Figure 6. Greyed out entries represent cleared bit-vector
bits for secondary rays that have completed their traversals.
The green entries represent the ray traversal path. The yellow
entries represent rays that are awaiting processing.



6

IV. RESULTS

The final raytracer was implemented in CUDA and tested
on a Nvidia GTX-970. Most of the results were recorded in
a single render; however we do support a realtime rendering
option. In general the performance of the raytracer is very
scene dependent. A scene with less reflections, refractions,
and light sources will have less emitted rays and thus better
(realtime) performance. We evaluate the performance across
multiple test scenes (from the graphics community) which are
described in Table I. Overall, depending on the scene and
parameters, we can achieve realtime framerates (15 - 20 Fps);
however, in cases of complex geometry and secondary rays
the framerates drop (0 - 4 Fps).

Scene Vertices Triangles Nodes Treelets
Cessna 3.745K 3.897K 0 0
Bunny 2.503K 4.968K 0 0

Dragon 50K 100K 0 0
Cornell 8.461K 7.088K 0 0
Sponza 121.7K 40.2K 0 0

TABLE I: Test Scenes

A. Kernel Execution

The overall kernel execution across our test scenes is shown
in Figure 8. Parsing is simply the time taken to parse the OBJ
file which defines the scene geometry and texture mappings
(CPU code). BVH construction is very important to realtime
performance, mainly if the scene is changed. We can see that
the construction method is very parallel and scales well across
increasing scene complexity. As expected, the tree traversal
dominates the overall execution time. This is ideal since most
time should be spent traversing and rendering the image.
However, the time spent in the queuing kernel should be
minimal although in many cases it is nearly equal or greater
to the traversal time. One reason for this is the long-tail of
execution, as less rays are traversed and less time is spent
in the traversal kernel, the overhead queuing becomes more
noticeable. Another reason is the fact that depending on the
ray buffer size, large amounts of data need to be sorted and
parsed. Stream compaction is a possible addition to improve
sorting and processing speed (discussed in future work).

B. Tunable Parameters

Many aspects of our raytracer are tunable and configurable.
These include recursive depth, ray batch-size, and treelet
sizing. Recursive depth indicates the maximum amount of
“bounces” for each ray which exponentially increases the
amount of rays traversed (depending on the material param-
eters in the scene). Additionally, as discussed earlier, these
rays cause further divergence due to their random nature.
Figure 9 shows execution times for increasing maximum
depth. Some scenes have little reflective/refractive materials;
however, dragon is completely refractive. Thus we can see
that our queuing and traversal kernels scale fairly well with
refraction and reflection rays.

In addition, the ray batch-size was modulated which is
shown in Figure 10. The ray batch-size is size of the buffer

Cornell Sponza Cessna Bunny Dragon

Scenes

100

101

102

103

Ti
m
e
 (
m
s)

Parsing

BVH Construction

Traversal

Queueing

Fig. 8: Execution Breakdown

Cornell Sponza Cessna Bunny Dragon

Scenes

102

103

104

Ti
m
e
 (
m
s)

0

1

2

Fig. 9: Recurse Depth

which contains each ray being traversed. Intuitively, a larger
buffer leads to more parallel work (more thread-blocks) within
the traversal kernel. However, we can see that the performance
of some scenes actually suffer from a larger buffer. Again,
this is due to the long-tail effect where the rest of the buffer
is currently not utilized for secondary ray generation. Thus,
there is wasted space as well as increased processing time in
the queuing kernel.



7

(a) Cessna (b) Dragon (c) Sponza

Fig. 7: Selected Renders

Cornell Sponza Cessna Bunny Dragon

Scenes

102

103

104

Ti
m
e
 (
m
s)

1024

65536

262144

1048576

Fig. 10: Varying Ray Batch-Size (rays)

C. Ray Hashing and Ordering

We came up with a metric called warp occupancy to
measure how balanced the treelet search work is in our kernel.
Warp occupancy is measured as the number of executed leaf-
node traversals divided by the number of leaf-node traversals
possible if every thread performed as many as the thread that
performed the most in that warp. We measured warp occu-
pancy across two of our optimizations that aimed to improve
thread balancing: ray sorting and Z-pattern ray generation.

As expected, the results show that generating eye rays in a
Z-pattern greatly improves warp occupancy. This is because
the rays can traverse together, leading to more similar tree
traversal profiles. This improvement in occupancy directly
translates to roughly 5% improved performance. Surprisingly,
the results for ray-sorting are not promising. Warp occupancy
actually decreased. We think this could be due to having an

insufficient number of bits to hash ray orientation. Also, the
scenes we are rendering may not have enough secondary rays
to warrant sorting the rays by orientation.

Fig. 11: Varying Ray Batch-Size (rays)

V. DEBUG TECHNIQUES

Working on personal machines with much weak (read
NVidia GT-750M) graphics cards introduced limitations to the
debug techniques available to us. During the course of the
project we discovered a few methods around these limitations.



8

The capability of cuda kernels to print to the screen was an
extremely helpful debug tool. We conditioned print statements
to track a single ray execution through every kernel call.
We also use print statements to investigate why some thread
indexes behaved inconsistently. Lastly, print statements were
used to track the status of ray queues and stacks during the
execution of our raytracer.

A lot of our work was done on a graphics card that was
also responsible for driving a local display. Systems place an
internal time limit on cuda kernels that run on graphics cards
that drive the display. This timeout is often hit when cuda-
memcheck is used and sometimes even when debug flags are
turned on. To get around this, we used cuda-memcheck to
narrow down to the erroneous function as much as possible.
Sometimes all we get is a kernel name. Then we used print
statements conditioned on possible error conditions such as
index out of range, loop iteration count exceeding some
threshold, etc. We discovered that a race condition exists be-
tween cuda kernel print statements and cuda kernel exception
detection. The kernel would exit with an exception before any
print statements could be executed. Thread synchronization
could not reliably cause the print statements to appear. We
suspect this is because we frequently have print statements
inside conditional blocks, causing inconsistent synchronization
behavior. Another possibility is that threads deliver the print
statement and pass the synchronization barrier much faster
than a print statement can be processed. To get around this
issue, we repeat the print statement multiple times when we

have a strong suspicion on an erroneous line of code. This
forces the system to show us the condition of the program
before a kernel exception. This debug technique allowed us
to close many of the nagging memory issues in our complex
code.

VI. FUTURE WORK

Our analysis showed that there are large imbalances in
the number of leaf-nodes checked between the threads of a
single warp. Frequently, a small number of threads will do
large numbers of leaf-node traversals while the other threads
complete the treelet traversal without visiting any leaf-nodes.
Since leaf-nodes are the longest latency computation, it would
be valuable to rebalance the work across the idle threads in the
warp. This functionality is facilitated by the shfl functions
in cuda. In order to avoid atomic writes, the result of the
intersections will need to be stored and gathered by a single
thread at the end of the treelet traversal function. We believe
this will do a lot to rebalance the low warp occupancy numbers
seen in our results.

A side-effect of our secondary ray generation stack is the
long tail that appears at the end of our frames. Because each
ray is confined to a single ray queue entry for the duration
of its lifetime through the scene, it cannot take advantage
of freed resources we run out of new eye rays to generate.
This tail can be reduced by allowing secondary rays to be
generated into empty ray queue entries at the end of the frame.
This change will introduce inter-thread dependencies. To avoid
atomic operations, the ray stack should track the completion
of each secondary ray entry independently. This will make
the secondary ray generation vector a multi-bit vector to
track the state of each secondary ray. The original master
ray queue entry will only perform pixel blending once all
secondary rays have completed. This can be asynchronously
passed between threads by a producer-consumer relationship
between secondary ray threads and the master ray thread.

Furthermore, there is room for improvement in our schedul-
ing and queuing kernels. Currently, the sorting and processing
overhead can be prohibitive for some scenes and the end of
execution. Thus, a method similar to stream compaction as
discussed in [1] could be implemented which would decrease
the amount of data sorted and scanned. Additionally, the sort
space should be decreased towards the end of the execution
(unless it is filled with secondary rays). There is also a need
for more experimentation with treelet construction and sizing.
Generating quality treelets is key for improved performance
with secondary rays, thus more heuristic-based methods may
perform better. Also, treelet sizes could possibly change dy-
namically depending on the scene or the stage in traversal (e.g.
merging treelets).

VII. CONCLUSION

In this paper, we explored current methods of achieving
realtime raytracing. We implemented the final raytracer in
CUDA and demonstrated nearly realtime performance for
certain scenes. However, as in results from past research,
these scenes are more simplistic and contain less secondary



9

rays. Further work needs to be done to analyze our current
implementation, not only for GPU utilization and divergence
but also the effectiveness of our structures and methods.
While we performed some initial utilization and occupancy
analysis with Nvidia’s tools and improved shared memory
usage, there is still potential for kernel improvement (in
terms of access stride, bank conflicts, register usage, and
more). These problems are still active sources of research,
especially with the increasing popularity of raytracing in the
graphics community. While rasterization will still continue to
be used for most realtime graphics, raytracing is becoming
a more realistic alternative. Probably the most interesting
option are hybrid solutions which either use rasterization for
some part of the raytracing process (i.e. casting eye rays) or
utilize special raytracing hardware. Such processes and devices
(PowerVR) already exist but need further improvement in
order for widespread adoption. As more raytracing techniques
are accelerated, we will begin to see increasingly complex
visual effects in the realtime graphics space.

REFERENCES

[1] Garanzha, K.; Loop, C., “Fast Ray Sorting and Breadth-First Packet
Traversal for GPU Ray Tracing,” Eurographics, 2010, vol. 29, no. 2,
pp. 289-298, May 2010.

[2] Afra, A.; Szirmay-Kalos, L., “Stackless Multi-BVH Traversal for CPU,
MIC and GPU Ray Tracing,” Computer Graphics Forum, 2013, vol. 0,
pp. 1-11, 2013.

[3] Timo, A.; Tero, K., “Architecture Considerations for Tracing Incoherent
Rays,” High Performance Graphics (2010), pp. 113-122, 2010.

[4] Lauterbach, Christian, et al. ”Fast BVH construction on GPUs.” Computer
Graphics Forum. Vol. 28. No. 2. Blackwell Publishing Ltd, 2009.

[5] Karras, Tero. ”Maximizing parallelism in the construction of BVHs,
octrees, and k-d trees.” Proceedings of the Fourth ACM SIGGRAPH/Eu-
rographics conference on High-Performance Graphics. Eurographics As-
sociation, 2012.


	Introduction
	Related Work
	Design
	Overview
	BVH-Tree Construction
	Primitive Sorting
	Leaf-node Construction
	Internal-node Construction

	BVH-Tree Traversal
	Load Balancing
	Secondary Rays and Shading

	Results
	Kernel Execution
	Tunable Parameters
	Ray Hashing and Ordering

	Debug Techniques
	Future Work
	Conclusion
	References

