
Microarchitecture Final Report Esha Choukse
EE 382N-19 Nicholas Kelly
5/13/16 Kishore Punniyamurthy

1 Introduction

Our major design objective was to create a somewhat realistic, in-order, x86 processor. Since it was in-order,
maximizing MLP and leveraging locality (to improve latency) was of utmost importance. Thus we put in
features such as: multiple MSHRs, a Store and Eviction Bu↵er, Critical-word first, and Memory Banks
with Row bu↵ers. Additionally, in order to ensure instruction throughput, we added a branch predictor,
instruction queue, a banked register file, and data forwarding (with scoreboarding).

2 System Overview

In general, our overall system is similar to conventional computer systems (see Figure 1). We have the main
processor, which contains the pipeline stages, as well as caches and memory controller. The CPU is connected
to memory and other I/O devices through a 32-bit data bus. Data from these devices is accessed through
the memory controller within the CPU based upon the TLB memory mapping (i.e. Memory-mapped I/O).

3 Pipeline Overview

Our final pipeline (see Figure 2) consists of eight stages:

• Fetch (IF): Instruction fetching/bu↵ering as well as branch prediction

• Decode 1 (DE1): Instruction length decoding and normalization

• Decode 2 (DE2): Instruction decode, pipeline control, operand formatting

• Register Fetch (RF): Registers, data forwarding, preprocessing

• Address generation (AG): Implements di↵erent addressing modes

• Load (LD): TLB, loads/stores, store bu↵er

• Execute (EX): Instruction execution functionality

• Writeback (WB): Register/memory writeback

Inputs/outputs are passed synchronously through registers with valid signals for each stage. However, there
are direct connections between stages (asynchronous) for writeback, data forwarding and other functionality.
While we initially were planning on a cycle time lower than 10ns, we ended up having a cycle time of 14ns.This
was primarily due to a critical path (discussed later) between LD and DE1 (or other stages).

4 Stages

4.1 Fetch Stage

The Fetch stage consisted of the instruction fetch mechanism (interface to the I-Cache), branch prediction,
and misprediction/jump handling.

1

4.1.1 Instruction Fetch

IF (Instruction Fetch, see Figure 3) is responsible for fetching the data for each instruction in the program.
It accesses this data through the I-Cache in a simplified (as compared to the D-Cache) interface which
essentially only supports cacheline-aligned accesses (16-bytes). Additionally, IF is decoupled from DE1
through two FIFOs: the Instruction Queue and EIP Queue. The Instruction Queue bu↵ers the data from
the I-Cache, allowing instructions essentially prefetched based upon speculation and be more resistant to
I-Cache misses. However, the usage of the Instruction Queue depends on the latency from memory, the
average instruction length, and the amount of mispredicted branches (flushes) in the program. The queue
consists of 4 entries, each of which contains a 16-byte instruction data portion, 1-bit indicating a Flow

Change, and 1-bit indicating an exception (ECODE).
The EIP Queue bu↵ers decisions made from the branch predictor. Whenever there is a change in

instruction flow apart from ”Not-taken” (i.e. Flow Change), the predicted (or mispredicted) EIP is pushed
onto the queue. The queue consists of 4 entries, each of which contains a 32-bit EIP address and a 5-bit
branch location (within two cachelines). Primarily, the Instruction Queue allows for the IF stage to bu↵er
instruction data regardless of whether stages are stalling the pipeline (which can happen often often due
to a cache-miss or store-dependent load). Similarly, the EIP Queue allows for branch speculation to make
nested predictions. However, since our pipeline is only 8-stages, this will likely only be utilized for small
(distance),long (iterations) loops. All accesses (other than the first unaligned address in a jump) made to
the I-Cache are cacheline-aligned. Upon an unaligned jump, the first partial cacheline is fetched. Since the
jump EIP is associated with this cacheline, the partial size can be calculated.

4.1.2 Misprediction

Upon a misprediction (as indicated from the EX stage), the entire front-end is invalidated. Additionally,
since there may be a I-Cache access already in-flight (which cannot be canceled), it may have to wait till
the I-Cache is available for a request of a di↵erent address. Thus, IF tracks the status of the I-Cache so the
misprediction request can be immediately fulfilled when the I-Cache is available.

4.1.3 Branch Prediction

In order to keep the Instruction Queue full, we utilize a two-level (GShare) branch predictor coupled with
a BTB (Branch Target Bu↵er). This allows us to immediately redirect the EIP with no delay at all (in the
ideal case). The branch predictor is updated with information from EX upon each branch. Similarly, for
taken branches, the BTB is updated with the correct target EIP and branch location. Since all predictions
are made at a cacheline granularity, the address used to update the tables is BRAddress + BRLength � 1.
This guarantees that the entire BR instruction will be fetched in the cacheline before fetching from the
branch target. Additionally, complications arise when there are multiple branches within a cacheline. Since
jump/call instructions can be very small (� 2-bytes), this can likely happen with small loops or switch/case-
like paradigms. In order to combat this, we use a partitioned 4-way BTB where each half of the cacheline
gets 2-ways. Thus, depending on the address, the closer result (in terms of BR instruction) is used. For
now, on a conflict within the grouping of 2-ways, the first way is used as the target. Similarly, the branch
predictor should also support a partitioned scheme, but the change was not made since it was late in the
testing/design phase. Currently, the branch predictor has a branch history register that tracks the last 8
branches which is XOR’d with the last 8 bits of the cacheline address to index into the tables and each entry
in the table contains a two-bit counter.

Ideally, we would have liked to implement a Call/Return stack, a partitioned branch predictor (to select
which prediction/branch within a cacheline to select), and a more e�cient forwarding path (e.g. forward
address from AG for unconditional branches).

4.2 Decode 1 Stage

The Decode 1 (DE1, see Figure 4) stage is responsible for instruction normalization and length decoding.
Length decoding is essential for shifting the instruction bu↵er (so it always points to a valid instruction)

2

and also for determining the address of the next instruction (used to determine mispredictions).

4.2.1 Instruction Normalization

The Instruction Bu↵er is populated from the IF stage through either a bypass path or the Instruction Queue.
The bypass path is activated if DE1 is invalid (during startup or branch) or the bu↵er is currently empty.
Otherwise, bytes from the top of the Instruction Queue are shifted in. These bytes are shifted in parallel
with prefix/opcode length decoding, allowing all potential 16-bytes to be available at decode. The bytes
from the queue are first shifted in based upon the initial bu↵er size (before length decoding). After length
decoding, the ”filled” (instruction with queue bytes) is shifted by the instruction length which becomes the
next value of the instruction bu↵er. If the initial size of the instruction bu↵er is 16-bytes, then the top
entry is popped of the Instruction Queue.

4.2.2 Length Decoding

Length decoding first consists of an initial step to find prefixes (maximum of two) and a second opcode
(0x0F). Only the operand-Size prefix is decoded in this stage, since it is necessary for length decoding. After
the location of the primary opcode is found, the prefixes/opcode are shifted out of the bu↵er and the primary
opcode and potential MODRM are fed to the Length Decoder. The Length Decoder consists of generated
espresso logic (two-level logic) from a table. The generated logic uses optimized NAND gates (alternating
inverting levels) and is completely bu↵ered. This logic produces lengths of each section in the instruction
including: MODRM, SIB, IMM, and DISP. The overall length is calculated by a carry-save adder which
adds the lengths of each section in parallel. Utilizing the CSA simplifies the Length Decoder, otherwise the
logic doubles in complexity.

It is important to note that DE1 was designed with respect to minimizing logic. If logic is unrestrained,
a separate decoder could be used starting on each of the first four bytes of the instruction. The correct value
would be selected with a MUX at the end, allowing for completely parallel calculation of length (and the
possibility of decoding multiple instructions). However, since length decoding was not on the critical path,
it was unnecessary.

4.2.3 Branching

As described earlier, a Flow Change bit is set for each entry in the Instruction Queue if there is a change in
flow (i.e. taken branch). Thus, when the bit at the top of the queue (or local DE1 bit) is set, it indicates
there is a BR instruction within the bu↵er. The branch address field in the EIP Queue specifies the location
of the branch within the instruction bu↵er. Upon reaching the branch location, the EIP from the EIP
Queue is popped o↵ as well as clearing the Instruction Bu↵er and filling it with a popped entry from the
Instruction Queue. The Next EIP for the instruction is set to the target (popped EIP) which allows for a
misprediction to be detected in the EX stage. Otherwise, if there is no branch in the bu↵er, Next EIP is
simply the current EIP plus the instruction length.

4.3 Decode 2 Stage

The Decode 2 (DE2, see Figure 5) stage is responsible for Instruction decoding, operand extraction, and
pipeline control (e.g. interrupts/exceptions). There are two flavors of instructions, those which are a
single µop and those which are multiple (i.e. use µcode). The only instructions that use µcode are those
which perform multiple instructions, such as CALL, RET, and IRET. Additionally, the Pipeline Controller
performs special operations for emitting µops as well as controlling/flushing portions of the pipeline.

4.3.1 µop Decoder

The µop Decoder is for 1 µop instructions coming from DE1. It decodes the control signals based upon the
opcode, MODRM, and operand-size. Similar to the Length Decoder, it utilizes espresso logic to generate

3

the control signals for the instruction. Additionally, for µcode-based instructions, it emits an address to be
used for indexing into the µcode ROM.

4.3.2 Pipeline Controller

The Pipeline Controller is responsible for handling REPNE, Exceptions/Interrupts, Mispredictions, and
HLT. It is implemented as a Mealy-FSM with 4-states. In the case of normal instructions (non-µcode) it
performs no function; although, for µcode operations, it directs the µop Sequencer to execute from µcode.
For Interrupts, it performs the following actions:

1. Flush the entire front-end (IF/DE1)

2. Inject bubbles until the last instruction is at WB

3. Save the Next EIP value of the last instruction (for pushing onto stack) and begin emitting the µcode
interrupt initialization routine

4. Upon the last µop, invalidate the DE2 stage

The last µop is a jump to the location specified by the entry in the IDT which e↵ectively activates the IF stage
and begins fetching instructions from the interrupt handler. Alternatively, Exceptions are triggered from
the WB stage when an exception bit bit is set. The response to an exception is similar to an interrupt ex-
cept the entire pipeline is flushed and the EIP of the instruction in WB is saved (for pushing onto the stack).

Mispredictions are triggered by the EX stage, where the pipeline controller simply flushes the entire
pipeline. In addition, if an I-Cache request is in-flight the Pipeline Controller has to bu↵er the target address
until after the response returns. REPNE is controlled by the Pipeline Controller where DE2 first requests a
temporary value of ECX which it locally decrements. A SCAS µOP is emitted for each iteration, and the
ECX and Z-flag value is checked for the end condition. Upon an end condition or an exception/interrupt
a MOV µop is emitted to save the ECX value to the RF. This saves the temporary state allowing for the
operation to be resumed after the interrupt/exception.

4.3.3 µop Sequencer

The µop Sequencer controls which µop is emitted to the RF stage. It receives direction from the Instruction
Decoder and Pipeline Controller on which µop to fetch from the µcode ROM as well as which operands to
override.

4.3.4 Operand Extraction

Operands (MODRM, SIB, Immediate, Displacement) are extracted from the instruction through shifting
by their respective lengths. Additionally, the Control signals emitted by the µop Sequencer are used to
format the operands for the RF stage. This includes normalizing the IMM/DISP bytes, selecting the correct
registers and valid signals for each SRx field and performing overrides for µcode operators or other special-
cases. Some of these special cases include: using SS as the segment when ESP/EBP are specified and using
ES for string operations. Similarly, the interrupt/exception initialization µcode emits a special µop which
utilizes the SIB addressing to perform a jump to the value at the IDTR+ ECODE ⇥ 8 address.

4.4 Register Fetch Stage

In this stage (see Figure 6), all the inputs required to complete the instruction (except memory operands)
are accessed. Major components of this stage include:

• Register File Block

• Scoreboard

• Predicate unit

4

• Data Forwarding

• Shadow Registers

4.4.1 Register File Block

The Register File block (see Figure 11) is a combination of 4 register files - General purpose registers, MMX
registers, Segment registers and EFLAG register. 5 bits are used to denote registers, the first 8 encoding
(2 most significant bits : 00) are used for general purpose registers, the next 8 are for MMX registers.
The next 8 encoding (2 most significant bits : 10) are for Segment registers. The last 8 encoding (2 most
significant bits : 11) are for used for denoting RegH (higher 8-bit) variants (e.g. AH, BH, CH) of general
purpose registers. The 32-bit, 16-bit, and lower 8-bit variants of registers have the same encoding and are
di↵erentiated using the data-size. This makes it easier for the Scoreboard to track dependencies across them.
The higher 8-bit variants (e.g. AH, BH) have a di↵erent encoding since accessing and writing them back
involves shifting. However, the Scoreboard treats them same as other variants of registers (i.e EAX, AX,
AL, and AH will set the same Scoreboard bit). The 2 most significant bits are used to decide which register
file is to be accessed or written.

The general purpose register file has 2 banks to support SIB addressing mode (requires upto 3 registers),
while using less area for register file. The banks are selected based on the least significant bit of the register
encoding. In our implementation of Repeat SCAS , the decode temporarily holds and modifies the ECX
value while generating the repeated SCAS instructions. The ECX register is read by decode even before the
repeat SCAS reaches the RF stage. This special request by decode is supported by overriding the register
source values in RF stage provided there is a port available.
EFLAG register is accessed and written depending on dedicated control signals.

4.4.2 Scoreboard

Our design has a 24-bit scoreboard (one bit for each register, except for AH, BH, CH, and DH). The score-
board bit of the destination register is set when the instruction leaves RF stage and is cleared at write back.
The Write-After-Write (WAW) condition will cause a problem since the scoreboard bit will be reset by the
initial write (even though a second write is in pipeline). For all registers except EFLAG, this condition is
resolved by creating a false dependency, ensuring that 2 writes to same register are never in the pipeline
simultaneously. This does not a↵ect the performance significantly since in most instructions (except MOV,
POP) the destination register is an input (2 address machine) as well.

However, this is not true for the EFLAG register. Creating false dependency between instructions which
will modify EFLAG register will severely a↵ect the performance. Our design has a Counting scoreboard

for the EFLAG register. It has a 3-bit counter which increments every time an instruction which modifies
EFLAG crosses RF stage. The counter is decremented on every EFLAG writeback. Any instruction which
wants to read EFLAG will stall at RF stage till the counter value is 0.

4.4.3 Predicate unit

This unit resolves the conditional instructions (CMOVC, JNE, and JNBE) in RF stage itself. Depending
on the evaluation of predicate, CMOVC is modified into regular MOV or NOP instruction. For conditional
jumps, the appropriate o↵set (next instruction or target) is selected based on the predicate value.

4.4.4 Data Forwarding

We have implemented Data Forwarding in our design. The valid values are forwarded from EX stage after
the output is computed. It was possible to compute and forward the data in execute stage since it was
not the critical path and hence did not a↵ect the cycle time. The destination register values in all pipeline
latches beyond RF are compared with the register sources in RF stage. It is a daisy chain configuration, so
if a match occurs, the matched data from that stage is forwarded, otherwise the data from the next stage is

5

forwarded. The daisy chain ensures only the earliest match in the pipeline will reach RF. For example, if a
match happens both in AG and EX stage, no valid forwarding will reach RF and the instruction in RF will
continue to stall.

4.4.5 Shadow Registers

Every register file entry has a corresponding shadow register, which can be use to take snapshot of the
register file. Our design implements a few instructions as µcoded instructions (e.g. CALL, RET). Shadow
registers are used to rollback the register file if any exception/interrupt occurs during the execution of a
µcoded instruction. A snapshot of the register file is taken at the beginning of µcoded instruction. The
values are restored if any interrupt/exception occurs during the execution of µcoded instruction.

4.5 Address Generation Stage

We have a separate stage for address generation and segment limit check, since the multiple levels of adders
were a potential critical path. Figure 7 shows the address generation logic. Kogge-stone adders were used
to make the computation faster.

4.6 Load Stage

We tried to optimize our system for memory, since in an in-order pipeline, cache-misses and memory accesses
account for many stalled cycles. The following optimizations were done in the memory system in order to
achieve better performance:

• 4-way cache: The D-cache is a 4-way, 8 set cache with a Tree-LRU replacement policy and 16B
cachelines.

• Store Bu↵er: We have a Store Bu↵er with 4 entries that we use to allow any loads to go ahead before
stores, unless there is a conflict in address, or the store bu↵er is full. Hence, in the general case, stores
only occur in the cycles where the instruction in the load stage does not need a memory load access.

• Critical Word First: Since the data bus to the memory is only 32 bits, a 16B cache line takes 4
cycles to be transferred. In order to avoid the needless stall, we have the memory wrap around the
data in a cache line starting at the exact load address. The load stage is unstalled as soon as the first
transfer of 32 bits completes (or 2 transfers for a 64-bit memory access).

• Row Bu↵er: Each bank in the memory has a 64B row bu↵er. This is done by always driving the
row address and chip enable to all the banks. By keeping the information on which row is open per
bank, we can get a row hits, which bring down the memory look-up time for a load from 60ns to 0ns
(8 cycles to 4 cycles to read complete cache line data in our system). Hence, row bu↵er hits directly
translate into 50% better access time.

• Bank-level parallelism: We have 16 banks in order to be able to process multiple requests in parallel,
and have di↵erent rows open in di↵erent banks.

• Multiple Memory Requests in transit: We have 4 MSHRs to support up to 1 I-cache miss,
1 D-cache miss, and 2 eviction requests being processed in parallel. This, in combination with the
bank-level parallelism and row hits, translates into a busy bus where no bus cycles are lost if there are
requests available with no bank conflict.

• Eviction Bu↵er: We have an eviction bu↵er of 2 entries, which on a hit leads to no stalls in the load
stage.

The MSHRs and memory bank optimization is explained in more detail in later sections. Here, we explain
the load stage alone, meaning, the interaction between loads/stores of the instruction with the D-cache and
store bu↵er.

6

Figure 8 shows the load stage. Note that if an instruction leads to a page fault or protection exception,
the load or store associated with it never starts. Also, once an instruction leads to an exception, all fol-
lowing instructions received in the load stage will be ignored until the decode flush signal is received. This
is to avoid unnecessary load operations (keeping the cache clean) and to avoid committing the wrong store
operations.

Upon a load: If the instruction in the load stage needs a memory load access, it goes through the following
steps:

1. The Unaligned Check Logic block checks if the access crosses a cacheline or page boundary. If a page
boundary is crossed, it leads to a load stage stall, since the TLB needs to be accessed twice. For a
cacheline boundary crossing, we have a stall as well, since it needs two D-cache accesses (assuming a
cached access). However, for an uncached access, only one access to the memory is required.

2. The physical load address is matched across all the valid entries in the store bu↵er. If there is a match
in the range of 1 cache line, that store is scheduled to the D-cache when ready and the load stage is
stalled until the store is committed.

3. Once the load is scheduled to the D-cache, upon a hit, we have the data. Upon a miss, the eviction
bu↵er is looked up. If there is a hit in the eviction bu↵er, the data is returned from there and the
eviction entry is written to the cache.

4. If the load led to a D-cache miss and an eviction bu↵er miss, it is written to the MSHR. Since memory
system is implemented Critical-Word-First, as soon as the required data is available on the bus, the
load stage is unstalled. The cache is filled in once the complete cache line has been transferred.

Upon a store: If the instruction in the load stage needs a memory write access, it goes through the
following steps:

1. If the instruction does not have any exceptions related to it (page and protection faults are first checked
for), a store bu↵er entry is allocated to it.

2. The store bu↵er is a circular queue to make sure that the stores happen in order with each other.

3. If the store bu↵er is full, it sends a signal to the D-cache scheduler asking to schedule the store before
the load. The load stage is stalled until a store bu↵er entry is successfully reserved for the instruction.

4. The ID of the reserved store bu↵er entry is then passed along through the latches to the WB stage.

5. Upon receiving the WB value from the WB stage, the store bu↵er entry is marked ready.
Instructions with multiple µops: If the store bu↵er entry belongs to a µcoded instruction, it can
still not be committed. This is because if a di↵erent µop of the instruction led to an exception, it
would lead to an inconsistent state. Hence, the store bu↵er keep track if the instruction belongs to a
µcoded instruction. If so, the store bu↵er entry is not marked ready until the WB value is received,
and a commit signal is received from the WB stage, with the terminal micro-op of that instruction. In
case of an exception, a flush signal is received, leading to flushing of all the store bu↵er entries related
to that µcoded instruction.

6. The store bu↵er always sends the next ready request to the D-cache scheduler, but is only scheduled
if there is a match between the load address and store bu↵er, or the store bu↵er is full, or there is no
load access waiting in a particular cycle.

4.7 Execute Stage

In this stage (see Figure 9), instructions are executed and their results are computed. This stage consists of
an ALU, Misprediction logic, BTB update logic, Exception logic, and Destination logic.

7

4.7.1 ALU

The ALU consists of Kogge-Stone adders, a shifter, and other dedicated units to execute instructions like
BTC, DAA, PINSRW, SCAS, and CMPXCHNG. The ALU uses the 4-bit ALU SEL control signal to perform
the appropriate functionality. Depending on the instruction, some of the control signals are modified by
ALU. For example, in CMPXCHNG, the destination can be memory or register depending on result of the
execution.

4.7.2 Misprediction Logic

This unit detects if a branch misprediction occurred, which is performed by comparing the target EIP
computed by the ALU and NEXT EIP. The NEXT EIP address contains the starting address of the next
instruction fetched and decoded by front end. In case of a mismatch, a misprediction signal is sent to Decode
along with the correct target address.

4.7.3 BTB update Logic

This logic provides information to update the BTB information. If a branch is taken, the target EIP is sent
to IF stage.

4.7.4 Exception check logic

This unit checks if the EIP of the current instruction and target EIP for a jump instruction are within the
segment limit. If the EIP is beyond the limit, an exception bit is set and ECODE is set to protection fault
vector.

4.7.5 DST2 Logic

This logic selects between store bu↵er ID (for memory write back) and second destination register depending
on the instruction. Instructions like ”XCHG”, ”POP Reg” write back to 2 registers. In such cases, this
logic selects the second destination register.

4.8 Write back Stage

This stage (see Figure 10) mainly consists of delay logic for multiple register writebacks, exception handling
logic and write back enable logic.

4.8.1 WB Delay Logic

: This logic generates delay signal if the instruction requires 2 register write back. Since the register file has
1 write port, instructions which require 2 register write back (POP Reg, XCHG) are stalled for 1 cycle so
that 1 register can be written back each cycle.

4.8.2 Exception handling logic

This logic generates signal to save and restore register file in the shadow register file. When a micro-coded
instruction is being executed, this logic signals the Register file to save the register file when the first µop
is in write back stage. If an exception occurs in between an micro-coded instruction, then this logic signals
the register file to restore the values from the shadow register.

4.8.3 W EN Logic and MEM WB EN Logic

This logic generates register and memory write back enables appropriately if they are valid and do not raise
exception (exception bit is 0).

8

Figure 12: Physical address break-up

5 Memory

Let us now talk about the memory controller, MSHRs, BUS and main memory organization.

5.1 Banks

The memory has been divided into 16 banks in order to provide opportunity for greater parallelism. Figure
12 shows the physical address composition in terms of rows, columns and banks. E↵ectively, we have 64
columns (1B each) and 32 rows (64B each) in a bank. We divided the address as shown in order to achieve
bank-level parallelism, both across pages and within a page.

5.2 Row Bu↵er

The chip-enables of all the memory chips are always enabled, and a valid row address is always provided.
This is to take advantage of the row bu↵er.

Note that the address setup time for a read is 60ns and for a write is 25ns. By always supplying the
last accessed row address to the SRAM cell, we make sure that if the same row is accessed again, there is
no address-setup time needed. E↵ectively, this brings down the time for a cache line read from 8 cycles to
4 upon a row bu↵er hit (since it takes 4 cycles to send the cache line over the bus). For critical word first,
it actually takes just one cycle to get the data (32 bits).

5.3 Memory controller and commands

We have an on-chip memory controller, which talks to the memory over the bus. We tried to come up with
a set of commands that allows for the maximum level of parallelism. For this, we uncoupled the opening
of a row (address setup) with an actual read or write operation. Also, the memory automatically resets its
write enables after a preset time. So no ”stop write enable” command is needed from the controller side.

Following commands can be sent by the memory controller to the memory over the bus:

• Open Row: This command needs the controller to set the BUS openrow, BUS bank and send the row
number as a part of the BUS Data. After this command is sent, the corresponding bank should not
be accessed for a read till 60ns and for a write till 25ns.

• Mem Busgrant: This command is sent along with a bank number, column number and data-size. The
command asks the memory to start sending the data starting at the given column number in the given
bank, in the row that is currently open. Since the memory is critical word first, the address is not
necessarily cacheline aligned. For a cacheable access, the data-size would be 16B, otherwise it would
be 8, 32, or 64 bits based on the instruction. Once this operation starts, the bus cannot be granted
to a di↵erent request until the data transfer completes, since the memory will be sending data over in
up-to 4 consecutive cycles.

• Start Write: This command is sent along with a bank number, column number, data-size and data.
The bus is again locked up until the write request has sent over all its data (up-to 4 cycles). Note
that the memory is smart to reset the write-enable signals internally. Hence, no stop write command
is needed. The data sent over is latched and supplied continuously to the bank until the write is
complete.

9

Figure 13: MSHRs and their update mechanism - the state only gets updated for the scheduled request

5.4 MSHRs

We have four MSHR entries which are tied to the type of request they can hold. There is 1 I-cache MSHR,
1 D-cache MSHR and 2 eviction WB MSHRs. Hence that is the type and number of memory requests that
can happen in parallel. A request is called ready to schedule for the bus, if its valid bit is set and its Wait
bit is low.

Upon having multiple requests ready, the scheduler chooses the request to schedule based on priority.
Priority is set such that I-cache gets more importance than D-cache, which gets more importance than
eviction requests. This is unless there is a back-pressure from the processor to get the eviction requests
done.

A unit of the memory controller listens to the bus constantly to keep track of the row open in each bank
and whether a bank is busy or not. This helps us determine if a request can be started and if it is a row
bu↵er hit. Once a request starts, the bank related to it gets locked to it, till the request is complete. Note
that this unit listens to the bus tra�c, hence, it also tracks the memory requests from the I/O devices that
potentially change the states of the banks.

5.5 State machine for memory requests

Following are the states a memory request can be in:

• 000: Not started

• 001: Address setup for read

• 010: Address setup for write

• 011: Start Reading in next cycle (Mem busgrant)

• 100: Reading Data

• 101: Start writing this cycle

• 110: Writing data

10

• 111: Request complete

Each state has a counter related to it, which defines how many cycles the request will be in that state.There
are also wait and DND bits for requests. The wait bit is set when a request is put into a state after a certain
delay. If the wait bit is set, the request can not be scheduled to use the bus in that cycle. If the DND bit
is set, there is guarantee that the same request will be scheduled to use the bus in the next cycle.

For example, when a read request does not lead to a row bu↵et hit, it starts in the state 1 and sends out
an Open Row command on the BUS. The state machine transitions it into state 3, but, with the wait bit
set and the counter for the request set to a value so that the request is stalled for 60ns (Read address setup
time). After the counter counts down to zero, the wait bit is set to zero and the request is now ready to be
scheduled in state 3. In state 3, it sends out a Mem busgrant command and goes into DND mode, where it
listens the data bud for the next 4 cycles if a cached access was made. Figure 14 shows the complete state
machine. Note that the state transitions are only done for a request that was scheduled to use the bus that
cycle.

6 Bus and arbitration

The synchronous BUS consists of the following lines:

• BUS clk

• BUS reset b

• BUS DS: Data size of the request (2 bits)

• BUS memgrant: Grants the memory permission to put the data on bus starting next cycle

• BUS OpenRow: Commands the memory to open the associated row in the specified bank

• BUS Bank: Bank number related to the current command

• BUS Col: Column number related to the request

• BUS Data: 32 bit data line

• BUS Valid Memctrl: The memory controller sets this bit whenever it is using the memory

• BUS Valid DMA: The DMA sets this bit when it is talking to the memory

• BUS DMA DND: The DMA sets this bit when it is in the middle of writing the data onto the bus
(state 110). The memory controller cannot take over the bus when this bit is set.

• BUS DMA Command: The memory controller sets this bit when the program accesses a Memory
mapped IO register for DMA.

• BUS KB Command: The memory controller sets this bit when the program accesses a Memory
mapped IO register for keyboard.

Arbitration
To keep the arbitration simple and fast, we make memory controller the default bus driver. This means

that the DMA can only drive the bus in the cycles when the BUS Valid Memctrl, BUS DMA Command
and Bus KB Command are all zero. The memory controller can take over the bus whenever it wishes to,
except, when the BUS DMA DND bit is set to 1. This is because we make sure that memory reads and
writes for a single request happen in consecutive cycles. Hence, if the DMA is writing a cache line to the
memory, the memory controller cannot use the bus for four cycles.

11

7 I/O

We have DMA implemented as a complex I/O and keyboard as simple I/O example in our system. The
TLB has a DMAIO and KBIO bit per entry which tells us if an access is an MMIO access. Whenever one
of these bits is set for a request, the memory controller sets the corresponding BUS command bit high.

7.1 DMA

The DMA, much like the memory controller listens to the bus to keep track of the banks’ busy status and
open-row status, in fact we re-used the same module for DMA. The state machine per cache-line request
of the DMA is similar to that of memory. As mentioned earlier, the default bus arbitration only allows
the DMA to control the bus if the memory is not controlling it. In our system, since we support writes to
memory at a granularity of 8 bits, unaligned DMA transfers are supported too.

So, once the DMA has all the data transferred into the bu↵er from the disk (750ns later), it starts trying
to get the bus control to either open the required row in a bank (on a row bu↵er miss), or to starts writing
the data onto the bus (in case of a row bu↵er hit). Once it has written all its data, it sets the DMA Complete
signal, which is a sideband signal from the DMA to the processor. This signal is connected to the decode
stage of the pipeline, which enters the interrupt handler after flushing the instructions in the pipeline.

7.2 Keyboard

The simple I/O or, keyboard is implemented as a single register that is connected to the bus. When the
processor sends a BUS KB Command, the KDR, or, the keyboard data register sends its 32 bit data onto
the bus. This is a single cycle transaction and does not require any arbitration.

8 Testing Methodology

We performed testing at both the unit level and system level. For unit testing, specific Verilog testbenches
were created to simulate the expected inputs into the stage/unit in order to verify the correctness of the
stage individually. In order to verify the correctness of the system, we created random assembly sequences
to exercise di↵erent execution patterns and addressing modes. These sequences could be generated using
many di↵erent options such as value bounds, address stride, operand types, and more. We used this to fill in
instructions in more directed tests as well as creating long (>700) instruction sequences to verify no hangs
occurred. Additionally, we created directed tests such as:

• Address strides, page boundary

• I/O interrupt functionality (Keyboard, DMA)

• Exception functionality (front/back-end page-fault, protection fault, segment-limit fault)

• Control flow (CALL/JMP/Jcc, recursion)

These tested specific parts of the architecture or specific situations that could not be tested with the random
instruction sequences.

9 Discussion

Overall, during the project, we found that coming up with a suitable testing environment was one of the
biggest challenges.

One of our notable bugs that was caught during checkout was that we used a Virtually addressed cache

and store bu↵er. This was because we happened to incorrectly assume that no two virtual pages would be
mapped to the same physical page. This led to errors, since we were not able to identify the conflict between
load address and store bu↵er entries based on virtual address. Hence, we changed it to a physically-addressed
system, (both cache and store-bu↵er).

12

10 Conclusion

At the end of the project, we were able to reach our design goal, producing a fairly aggressive, in-order, x86
processor. We were able to include many memory features, such as MSHRs, a Store Bu↵er, and Banked
Memory. Additionally, we were able to include an Instruction Queue, branch predictor, banked register file,
and data forwarding.

However, we did not have time to completely balance the design. Our critical path was dependent on
the Load stage and its feedback to the decode stage, forcing a higher than necessary cycle time for all other
stages. This could be remedied by pipelining the Load stage or having faster (or pessimistic) stall logic. We
also later realized that we could have moved the TLB access to the AG stage in order to make the Load
stage do lesser work and balance the stages.

Even so, our processor performs very well in terms of cycle count, primarily due to the amount of MLP
we utilize and less amount of time spent stalling.

13

C
PU

DM
A

B
U
S

KB
M

EM
O

RY
BANKS

M
EM

O
RY

CO
NTRO

LLER

M
SHRs

I-CACHE

D-CACHE

TLB
STO

RE
BUFFER

D-CACHE
SCHEDULER

M
AIN

PIPELINE

FIG
U

R
E 1: SYSTEM

 D
IAG

R
AM

C
PU

DM
A

B
U
S

KB
M

EM
O

RY
BANKS

M
EM

O
RY

CO
NTRO

LLER

M
SHRs

I-CACHE

D-CACHE

TLB
STO

RE
BUFFER

D-CACHE
SCHEDULER

M
AIN

PIPELINE

FIG
U

R
E 1: SYSTEM

 D
IAG

R
AM

VLD ECODE EIP (32)FLOW CHANGE BUFFER SIZEINST BUFFER

VLD NEXT EIP EIPINSTRUCTION PREFIX OVERALL LEN DISP
 LEN

IMM
LEN

SIB
LEN

MODRM
 LEN

OPCODE
 LEN

OPERAND
OVR (1) PREFIX LEN

VLD SR1_1 SR1_2SR2 CS IMM DISP

NXT
EIP EIPSREGSR1_2

VLD
SR1
31:0 CSSR2

31:0
NXT
EIP EIPSR1

63:32
SR2
63:32

DISP
 DSTSEG

LIMIT

VLD SR1
31:0CS SR2

31:0
NXT
EIP EIPSR1

63:32
SR2
63:32

LD
ADDR DSTST

ADDR

VLD SR1
31:0CS SR2

31:0
NXT
EIP EIPSR1

63:32
SR2
63:32

WB_ID TO
ST BUFF DST

VLD CS OUT
31:0

NXT
EIP EIPOUT

63:32DST WB_ST_ID/
DST2

EXC
BIT ECODE

EIP
Q

INST
Q

INST
$

BRANCH
PRED

B
TB

MISPRED &EXC
LOGIC

BRANCH
SEL

+
4

NXT
EIP

INST
VALID
LOGIC

BR/POP
LOGIC LENGTH

LOGIC
INSTRUCTION

SHIFT
BUFFER

FILL

UCODE
SEQUENCER

LOGIC

UOP

DECODE
LOGIC

OPERAND LOGIC

OP/MOD
SHF

SIB
SHIFT

IMM
SHIFT

DISP
SHIFT

REG
FILE

DST
CALC

SCO
RE

BO
ARD

PRED
UNIT

STALL
LO

G
IC

SR1_1

SR2

ADDR
CALC

M
SHR

ST Q TLB

D
 $

W_EN
WB_VAL

WB_ADDR

ALU

M
ISPRED
LO

G
IC

BTB
UPDT

EXCEP
CHECK

TARGET
EIP

SEGMENT
LIMIT

W
B_DELAY
LO

G
IC

W
_EN

LO
G

IC

M
EM

W

B_EN
LO

G
IC

TO

LD_STAG
E

STALL

TOREG
FILE

F
IG

U
R

E
 2

: P
IP

E
L

IN
E

 O
V

E
R

V
IE

W

IF S
TA
G
E

D
E1 S

TA
G
E

D
E2 S

TA
G
E

R
F S
TA
G
E

A
G
 S
TA
G
E

LD
 S
TA
G
E

EX
 S
TA
G
E

W
B
 S
TA
G
E

VL
D

I-CACHE

FETCH EIP (32) BR (5) FC (1)

INSTRUCTION QUEUE
(16B+2) x 4

EIP QUEUE
(32+5) x 4

EC
O

DE
EI

P
(3

2)
FL

O
W

CH
AN

G
E

BU
FF

ER
 S

IZ
E

(6
)

IN
ST

 B
UF

FE
R

(3
2B

)

BRANCH LOGIC

BTB BRANCH
PREDICTOR

UNALIGNMENT
LOGIC

4

MISPREDICTION
LOGIC

FETCH
CONTROLLER

BUFFER SIZE
CALC

BYPASS
LOGIC

ADDR

DATA
PAGE FAULT

RDY

IN PUSH POP

PUSH POP

IN

RDY

RDY

OUT

OUT

ORIGIN EIP (32)

MISPREDICTION SIGNALS

DE_FC

DE_BUF

DE_INST

DE_EIP

REQ

EIP MUX

FIGURE 3: FETCH STAGE

VL
D

EC
O

DE
EI

P
(3

2)
FL

O
W

CH
AN

G
E

BU
FF

ER
 S

IZ
E

(6
)

IN
ST

 B
UF

FE
R

(3
2B

)

VL
D

NE
XT

 E
IP

(3
2)

EI
P

(3
2)

IN
ST

RU
CT

IO
N

(1
6B

)
PR

EF
IX

(2
B)

O
VE

RA
LL

LE
N

(4
)

DI
SP

 L
EN

(3
)

IM
M

 L
EN

(3
)

SI
B

LE
N

(1
)

M
O

DR
M

 L
EN

(1
)

O
PC

O
DE

 L
EN

 (1
)

O
PE

RA
ND

O
VR

 (1
)

PR
EF

IX
LE

N
(2

)

PREFIX
LENGTH

DECODER
LENGTH DECODER

CSA
OVERALL LENGTH

INSTRUCTION SHIFT

INSTRUCTION VALID
LOGIC

NEXT SIZE
LOGIC

BUFFER
FILL LOGIC

QUEUE SHIFT

OPCODE
 LENGTH

DECODER

PREFIX
SHIFT

BR LOGIC

INSTQ/EIPQ
LOGIC

FIGURE 4: DECODE 1 STAGE

VL
D

NE
XT

 E
IP

(3
2)

EI
P

(3
2)

IN
ST

RU
CT

IO
N

(1
6B

)
PR

EF
IX

(2
B)

O
VE

RA
LL

LE
N

(4
)

DI
SP

 L
EN

(3
)

IM
M

 L
EN

(3
)

SI
B

LE
N

(1
)

M
O

DR
M

 L
EN

(1
)

O
PC

O
DE

 L
EN

 (1
)

O
PE

RA
ND

O
VR

 (1
)

PR
EF

IX
LE

N
(2

)

VL
D

SR
1_

1
(5

)
SR

1_
2

(5
)

SR
2

(5
)

CS
 (4

0)
IM

M
 (4

B)
DI

SP
 (4

B)
NE

XT
 E

IP
 (3

2)
EI

P
(3

2)
SR

EG
 (5

)

O
PC

O
DE

 S
HI

FT
 [0

-1
B]

M
O

DR
M

 S
HI

FT
 [0

-1
B]

SI
B

SH
IF

T
[0

-1
B]

IM
M

 S
HI

FT
 [0

-4
B]

DI
SP

 S
HI

FT
 [0

-4
B]

M
O

DR
M

SI
B

DI
SP

IM
M

INSTRUCTION (UOP)

DECODER

UCODE

ROM

PIPELINE

CONTROLLER

(FSM)

TEMP ECX

1

DMA FLAG KB FLAG

PIPELINE STATUS

LOGIC

PREFIX

DECODER

INTERRUPT

LOGIC

UOP SEQUENCER

LOGIC

O
P

E
R

A
N

D

L
O

G
IC

TEMP EIP

DMA + KB INTERRUPT SIGNALSVALID SIGNALS MISPREDICT SIGNALS

ECX
EIP STORE

CS

UADDR

OPCODE/MOD

DATA

STATUS

EIP

INTERRUPT

ADDRCS

CS

FIGURE 5: DECODE 2 STAGE

VLD

REGISTER

FILE BLOCK

SR1_1

SR1_2SR2

CS

IMM

DISP

31:0

NXT

EIP

EIP

Sreg

VLD

SR1

31:0

CS

SR2

31:0

NXT

EIP

EIP

SR1

63:32

SR2

63:32

DISP

31:0

STALL

LOGIC

SCORE BOARD

PREDICATE UNIT

DST CALC DST

SR1_2

W_EN

W_REG

W_VALUE

IMMEDIATE

 VALUE

IMM_REQ

F
W

D
_

S
R

1
_

1

F
W

D
_

S
R

1
_

2

F
W

D
_

S
R

2

AG_STALL RF_STALL

FWD_VLD3

FWD_VLD2

FWD_VLD1

SEG

LIMIT

SEGMENT

LIMIT

FIGURE 6:

REGISTER FETCH STAGE

V
L

D
S

R
1

3
1

:0
C

S
S

R
2

3
1

:0

N
X

T

E
IP

E
IP

S
R

1

6
3

:3
2

S
R

2

6
3

:3
2

D
IS

P

3
1

:0
D

S
T

V
L

D
S

R
1

3
1

:0
C

S
S

R
2

3
1

:0

N
X

T

E
IP

E
IP

S
R

1

6
3

:3
2

S
R

2

6
3

:3
2

L
D

A
D

D
R

D
S

T
S

T

A
D

D
R

[15:0]

[47:32]

Shifter

Scale

Index

0

isSIB

0

2

2
4

isPopBaseESP&DataSize

0

IsOnlyDisp

Base

Scaled Index

 + Disp

isSegReginNEIP

0

-2

-2
-4

isPush & DataSize

SR2 [31:0]

(SP)

SR2 [63:48]

(SS)

SegR

Compare
SegLimit

DoSegLimitCheck

S
e

g

L
im

it

AG_SegFault

IsPush

IsPop

Stall
Logic Ld_stall

Ag_stall

FIGURE 7:

ADDRESS GENERATION STAGE

VL
D

SR
1

31
:0

CS
SR

2
31

:0
NX

T
EI

P
EI

P
SR

1
63

:3
2

SR
2

63
:3

2
LD

AD

DR
DS

T
ST

AD

DR

VL
D

SR
1

31
:0

CS
SR

2
31

:0
NX

T
EI

P
EI

P
SR

1
63

:3
2

SR
2

63
:3

2
W

B_
ID

 T
O

ST
 B

UF
F

DS
T

Unaligned
Check

TLB

Validity
Check

Store Buffer
(4 entries)

D-Cache
Scheduler

MSHRs/

Eviction

Buffer

D-Cache

Exception
Logic

Stall
Logic

WB Data/Valid/ID

To Fetch

From I cache

St
or

e
Bu

ffe
r e

nt
ry

 to

 c
om

m
it

LD
 A

dd
r M

at
ch

ed
/

ST
 B

uf
fe

r F
ul

l

Commit/Flush
Signals

I cache page fault Exc/Ecode

Exception

Fetch PPN

Fetch VPN

Va
lid

 s
ig

na
ls

Dcache request
details

D
ca

ch
e

hi
t

Ev
ict

io
n

de
ta

ils

ST data

MSHR data

isMemResponse

Va
lid

 S
ig

na
ls

Address Matched/
Store Buffer Full

DC
ac

he
_s

ta
lle

d
Dcache_hit

SR1

is_load

is LD
is SR

To Memory

Cr
itic

al
 W

or
d

Fi
rs

t
Re

sp
on

se

EX_stall

LD_stall

LD/ST
VPN

FIGURE 8: LOAD STAGE

VLD

CS

OUT
31:0

NXT
EIP

EIP

OUT
63:32

DST

WB
ST_ID/
DST2

VLD

SR1
31:0

CS

SR2
31:0

NXT
EIP

EIP

SR1
63:32

SR2
63:32

WB
ST_ID/
DST2

DST

ALU

STALL
LOGIC

MISPREDICTION
LOGIC

BTB UPDATE
LOGIC

EXCEPTION
CHECK LOGIC

(CS SEG LIMIT CHECK)

DST2
LOGIC

EXC
BIT

ECODE

EXC
BIT

ECODE

EIP

DST

WB STALL
EX STALL

M
IS

PR
ED

TA
RG

ET
 E

IP

BR
_T

AK
EN

BR
_E

IP

FIGURE 9:

EXECUTION STAGE

VLD

CS

OUT
31:0

NXT
EIP

EIP

OUT
63:32

DST

WB
ST_ID/
DST2

EXC
BIT

ECODE

WB DELAY
LOGIC

W_EN
LOGIC

MEM_WB_EN
LOGIC MEM_WB_EN

MEM_DATA [31:0]

MEM_DATA [63:32]

MEM_STORE_ID

WB_EN

REG_WB_DATA[31:0]
REG_WB_DATA[63:32]

WB_REG

EXCEPTION
HANDLING

LOGIC

EX
CE

P

EX
C_

CO
DE

SA
VE

_R
EG

RE
ST

O
RE

_R
EG

FIGURE 10:
WRITEBACK STAGE

SEGMENT REGISTER
FILE

MMX
REGISTER

FILE

SRC REG

OVERRIDE

SEG REG

LOGIC

SEG_REG_VLD MMX_REG_VLDGP_REG_VLD

S
R
1
_
1
[
4
:
3
]

S
R
1
_
2
[
4
:
3
]

S
R
2
[
4
:
3
]

SR1_1[2:0]

SR2[2:0]

SR1_2[2:0]

ECX_REQ

ECX_REQ_STALL

S
R
1
_
1
[
4
:
3
]

S
R
2
[
4
:
3
]

S
R
E
G
[
4
:
3
]

SREG[2:0]

(SEGMENT REGISTER

 FOR R/M MODE)

S
R
1
_
1
[
4
:
3
]

S
R
2
[
4
:
3
]

BANK 0 BANK 1

SR1_2

SEL

UNIT

S
R
1
 O
U
T

[
3
1
:
0
]

S
R
2
 O
U
T

[
3
1
:
0
]

S
R
1
 O
U
T

[
6
3
:
3
2
]

S
R
2
 O
U
T

[
6
3
:
3
2
]

EFLAG REGISTER
RD_EFLAG

VLD

W
B
_
U
P
D
T
_
E
F
L
A
G

W
B
_
E
F
L
A
G
_
V
A
L
U
E

FIGURE 11: REGISTER FILE

NOT STARTED

STATE 000

BUS MEM_GRANT

COUNTER:Data size

DND =1

STATE 011

READ FROM BUS

COUNTER

DND =1

STATE 100

BUS START WRITE

COUNTER:Data size

STATE 001

OPEN ROW COMMAND

COUNTER:2

WAIT =1

STATE 010

COMPLETE

DND =0

STATE 111

WRITE DATA TO BUS

DND = 1

COUNTER

OPEN ROW COMMAND

COUNTER:4

WAIT =1

STATE 001

Bank Ready

!Row Buffer Hit

Read Access

Bank Ready

Row Buffer Hit

Read Access

Wait = 0

Counter = 0

Counter != 0

Bank Ready

!Row Buffer Hit

Write Access

Wait = 0

Counter != 0

Counter = 0

FIGURE 14:
MEMORY CONTROLLER

STATE MACHINE

